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Abstract

important in asthma.

regulation of airway hyper-responsiveness in asthma.

Background: During pregnancy asthma may remain stable, improve or worsen. The factors underlying the
deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates
a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence
suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the
oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway
smooth muscle (HASMCs) function in the presence and absence of IL-13 and TNFa, cytokines known to be

Method: Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery
assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings
and precision cut lung slices (PCLS) were used to measure contractile responses. Finally, ELISA was used to
compare oxytocin levels in the bronchoalveloar lavage (BAL) samples from healthy subjects and those with asthma.

Results: PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both
interleukin (IL)-13 and tumor necrosis factor (TNFo) stimulate a time-dependent increase in OXTR expression at 6
and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in
cells treated for 24 hr with IL-13. Interestingly, TNFou had little effect on oxytocin-induced calcium response despite
increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force
generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL) fluid
derived from healthy subjects as well as from those with asthma.

Conclusion: Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in
HASMCs suggesting a potential role for inflammation-induced changes in oxytocin receptor signaling in the

Introduction

Oxytocin, a hypothalamic neuropeptide, induces uterine
contractions during parturition and milk ejection during
lactation via activation of the oxytocin receptor, a G
protein-coupled receptor [1]. Prior to the onset of labor,
uterine muscle becomes exquisitely sensitive to oxytocin
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due to dramatic increases in the expression of oxytocin
receptors (OXTR) [2] whose activation promotes myo-
metrial shortening. Recently, the role of oxytocin has
expanded given the discovery of OXTR gene expression
in diverse tissues such as the pituitary, kidney, ovary,
testis, thymus, heart, vascular endothelium, osteoclasts,
myoblasts, pancreatic islets, adipocytes, several types of
cancer cells [1], smooth muscle and epithelial compart-
ment of the human epididymis [3]. Evidence also sug-
gests oxytocin may serve as an acute phase response
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protein after injury [1]. Whether oxytocin plays a role in
lung diseases remains unknown.

Asthma, a chronic disorder with a genetic and an
environmental component [4], manifests as reversible
airway obstruction, airway hyper-responsiveness, inflam-
mation and remodeling. Asthma affects an estimated
15 million Americans, and asthma morbidity and mor-
tality continues to rise globally [5]. Airway inflammation
associated with the mucosal infiltration of T helper (Th)
2 subset of CD4" T cells and eosinophils [6,7] evokes
the production of various pro-inflammatory mediators
involved in the pathogenesis of asthma [5]. Evidence
suggests that the incidence of asthma exacerbations dur-
ing pregnancy occurs in about 20% of women [8,9].
Why asthma may worsen during pregnancy in some
women remains unclear. The role of gonadal hormones
in altering lung function during pregnancy has been
proposed as a possible explanation for asthma morbidity
in pregnancy [10,11]. A direct action of estrogen on air-
way smooth muscle function has been recently reported
as a plausible molecular mechanism linking sex hor-
mone and disease worsening [12]. Other circulating
pregnancy-associated factors also exert detrimental
effects on asthma by modulating airway smooth muscle
function. Evidence suggests that oxytocin can act as a
potent immune-modulary factor in animal models of
myocardial infarction [13], atherosclerosis [14] or pyelo-
nephritis [15]. Although the oxytocin receptor is
expressed in the lungs [16], whether oxytocin plays a
role in airway diseases remains unknown.

Of the resident airway tissues, airway smooth muscle,
a target and/or producer of inflammatory cytokines,
represents the pivotal tissue regulating bronchomotor
tone [17,18]. We postulate that oxytocin modulates air-
way smooth muscle shortening and that pro-inflamma-
tory cytokines, interleukin (IL)-13 and tumor necrosis
factor TNFa, may amplify oxytocin’s effects on airway
smooth muscle [19]. Previous studies demonstrate that
calcium mobilization induced by oxytocin in human
myometrial cells was enhanced with TNFo treatment
[20]. This is an interesting finding since we have also
shown that TNFo amplifies calcium responses evoked
by other agonists including carbachol, bradykinin and
histamine [21,22]. Others, using murine models of aller-
gen-induced inflammation, have implicated TNFa and
IL-13 in promoting airway hyper-responsiveness inflam-
mation and mucus hyper-secretion [23-27].

Here, we report the expression and function of oxyto-
cin receptor in airway smooth muscle (both in human
and mouse); more importantly, we also report that oxyto-
cin receptor expression is affected by IL-13 and TNFa. In
addition, measurable oxytocin levels are found in BAL
fluid in healthy subjects and those with asthma. Although
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the clinical relevance of these findings remains to be
determined, the ability of cytokines to evoke oxytocin
responses raises a novel hypothesis that expression or
coupling of oxytocin receptors, not oxytocin levels per se,
in the airways promotes airway hyperresponsiveness.

Materials and methods

Subjects

Subjects with asthma and healthy controls were
recruited from Glenfield Hospital outpatients, staff, and
by local advertising. Asthma was defined by one or
more of the following objective criteria: significant
bronchodilator reversibility of FEV; > 200 ml, a provo-
cation concentration of methacholine causing a 20% fall
in FEV; (PCy) of less than 8 mg/ml or a peak flow
amplitude % mean over 2 weeks of more than 20%.
Asthma severity was classified using the current GINA
guidelines based upon the GINA treatment steps (GINA
guideline). Normal subjects had no history of respiratory
disease and normal spirometry and methacholine
responsiveness. All subjects were non-smokers with a
past smoking history of less than 10 pack years. The
Leicestershire Ethics Committee approved the study and
all patients gave their written informed consent.

Protocol and clinical measurements

Subjects attended on two occasions. At the first visit,
spirometric parameters before and after bronchodilator
(400 pg inhaled albuterol) and methacholine airway
responsiveness using the tidal breathing method (0.03 to
16 mg/ml) were determined. At the second visit 1 week
later, the subjects underwent bronchoscopy and a 180 ml
BAL into the middle lobe. The BAL was centrifuged and
the cell-free supernatant stored at - 80°C for later analysis.

Oxytocin assay

Oxytocin levels in BAL samples from asthmatic and
healthy subjects were assayed using a competitive
enzyme immunoassay kit (ELISA) from Assay Designs,
Inc. catalog no. 901-153 (Ann Arbor, MI, USA). Assay
procedure and calculation of the concentration of oxyto-
cin were performed using the protocol provided by the
kit. Briefly, 100 pl of all standards and BAL samples
were loaded in triplicate with 50 pl of blue conjugate
antibody into each well, except the total activity and
blank wells. The plate was sealed and incubated at 4°C
for 24 hr. After incubation, wells were washed 3 times,
and pNpp substrate solution was added and incubated
at room temperature for 1 hr. Subsequently, the plates
were read immediately at an optical density of 405 nm.
The concentration of oxytocin in the samples was calcu-
lated based on the standard curve obtained with known
concentrations of oxytocin provided in the kit.



Amrani et al. Respiratory Research 2010, 11:104
http://respiratory-research.com/content/11/1/104

Human airway smooth muscle cell culture

Human tracheae were obtained from lung transplant
donors, in accordance with procedures approved by the
University of Pennsylvania Committee on Studies Invol-
ving Human Beings. A segment of trachea just proximal
to the carina was removed under sterile conditions and
the tracheal muscle was isolated. Enzymatic dissociation
of the tissue was performed for 90 min in a shaking
water bath at 37°C. The cell suspension was filtered
through 105 pum Nytex mesh, and the filtrate was
washed with equal volumes of cold Ham’s F12 medium
(Gibco BRL Life Technologies, Grand Island, NY) sup-
plemented with 10% FBS (HyClone, Logan, UT), 100 U/
ml penicillin (Gibco), 0.1 mg/ml streptomycin (Gibco),
and 2.5 pg/ml fungizone (Gibco). Aliquots of the cell
suspension were plated at a density of 1 x 104 cells/
cm2. The cells were cultured in Ham’s F12 media sup-
plemented with 10% FBS, 100 U/ml penicillin, 0.1 mg/
ml streptomycin and this was replaced every 72 hr.
Human ASM cells in subculture during the second
through fifth cell passages were used. Primary human
airway smooth muscle cells from “normal” donors were
cultured with IL-13 or a naturally occurring mutant
form IL13R130Q (50 ng/ml) or TNFa (10 ng/ml) for 0,
6 or 18 hr after resting the cells for 24 hr.

Reverse transcription and real time PCR

Real time PCR was performed to assess whether oxytocin
receptor expression was modulated by pro-inflammatory
cytokines, TNFa., IL- 13 and IL-13R130Q), a naturally
occurring isoform of IL-13 and associated with high
serum IgE levels [28]. Total RNA was isolated using the
RNeasy mini kit (Qiagen, Inc., Valencia, CA) as per manu-
facturer’s instructions. 1 pg of total RNA was reverse tran-
scribed as per protocol using TagMan® RT reagents
(Applied Biosystems) at 37°C for 120 min followed by
25°C for 10 min. Forty ng of cDNA per reaction was used
in the real time PCR using the ABI Prism® 7900 HT
Sequence Detection System (Foster City, CA). In the pre-
sence of AmpliTaq Gold DNA polymerase (ABI Biosys-
tems, Foster City, CA), the reaction was incubated for 2
min at 50°C followed by 10 min at 95°C. Then the reaction
was run for 40 cycles at 15 sec, 95°C and 1 min, 60°C per
cycle. Assays-on-Demand™ primers and probes specific for
oxytocin receptor (Applied Biosystems; ID number
Hs00168573_m1) were used in the PCR. The endogenous
18 S rRNA was measured and used to normalize all sam-
ples using the AACT method (Applied Biosystems). Gene
expression level of OXTR is expressed relative to 18 S and
untreated samples in each stimulation study, respectively.
At least 3 (often 6) replicates were run for each condition.
Student T-test was conducted between a pair of treatment
conditions to determine if the observed difference in
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expression value was statistically significant, use p < 0.05
as threshold.

Flow cytometry

Flow cytometry was performed to determine whether
cytokine-induced changes in receptor mRNA expression
is associated with changes in protein expression as
described previously with slight modifications [29].
Briefly, adherent cells treated with 50 ng/nl IL-13 or
10 ng/ml TNFa for 24 hr were washed with PBS,
detached by trypsinization (2 min, 37°C) and then
washed with Ham’s-F12 (10% FCS) media, centrifuged,
and transferred to microfuge tubes (1.5 ml). Cells were
resuspended in fixation medium A and then permeabili-
zation medium B (Caltag, Burlingame, CA). Cells were
then incubated with either control isotype of goat poly-
clonal anti-human oxytocin receptor antibody (2 pg/ml,
Santa Cruz Biotech., CA), washed, and followed by 1 hr
incubation with a fluorescein isothiocyanate-conjugated
secondary antibody (1:100, Jackson ImmunoResearch
Laboratories, West Grove, PA). The cells were then cen-
trifuged and resuspended in cold PBS in microfuge
tubes. Samples were then analyzed using an EPICS XL
flow cytometer (Coulter, Hialeah, FL). Levels of oxytocin
receptor were expressed as the percent increase in mean
fluorescence intensity over unstimulated cells. Oxytocin
levels in the sputum supernatant of asthmatics and
healthy control subjects were compared using the Wil-
coxon’s ranksum test. Multivariable linear regression
was used to determine whether oxytocin levels differed
between the two groups after correcting for potential
confounders. Age, sex, percent predicted forced expira-
tory volume in one second, and inhaled corticosteroid
dose were added into the model with disease state one
at a time to determine if they altered the effect of dis-
ease on oxytocin levels.

Cytosolic free calcium

To further determine whether changes in receptor
expression were associated with increased receptor func-
tion, we first tested whether oxytocin triggers calcium
responses in human ASM cells and whether these
responses were affected following treatment with cyto-
kines. Calcium measurements were performed as
described previously [30]. Briefly, growth-arrested
HASM cells stimulated with 50 ng/ml IL-13 for 24 hr
were loaded with 3 uM Fura-2/AM in HEPES buffer
and resuspended (at 10° cells/ml) in 1-cm quartz cuv-
ettes. After preincubating at 37°C for 2 min with gentle
stirring, changes in Fura fluorescence were measured
with a PTI fluorimeter (Photon Technology Interna-
tional, Inc.) after addition of oxytocin (0.1-1 mM).
Thrombin or bradykinin was used as positive controls
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as these agonists have previously shown to increase cal-
cium mobilization in HASM cells [31].

Measurement of contractile responses

Whether oxytocin induces contractile responses in air-
way smooth muscle has not been tested. Based on the
oxytocin ability to trigger calcium responses in cultured
ASM cells, we next investigate whether oxytocin also
stimulates contractile responses using two different
experimental approaches:

(1) Isometric force generation

As described in our previous reports [32-35], tracheal
smooth muscle reactivity was analyzed using tempera-
ture-controlled (37°C) myographs (Organ Bath Model
700MO, ].P. Trading, Aarhus, Denmark) containing 5
ml of Krebs-Henseleit (K-H) (118 NaCl, 4.7 KCl, 1.2
KH,POy, 11.1 dextrose, 1.2 MgSQO,, 2.8 CaCl, and 25
NaHCO3) that was continuously aerated with a 5% CO,
and 95% O, mixture; a pH of 7.40-7.45 was established
for the entire duration of the experiments. The tracheal
segments were mounted on two L-shaped metal pins.
One pin was connected to a force-displacement transdu-
cer for continuous recording of isometric tension by the
Chart software (AD Instruments Ltd., Hastings, UK).
The other pin is directly connected to a displacement
device, allowing the adjustment of the basal tensions
that were set at approximately 0.5 g and stimulated with
agonists after attainment of steady-state tension. All
values were expressed as means = SE. Student’s
unpaired t-test was used to compare the effect of oxyto-
cin or carbachol. A P value of < 0.05 was considered
significant.

(2) Precision cut lung slices (PCLS)

PCLS was performed as described previously [36,37].
Female Balb C mice (8-10 weeks) were euthanized by an
overdose to carbon dioxide gas. The trachea was
exposed and a cannula was inserted. Lungs were inflated
using 1.0 ml of a 2% (w/v) low melting point agarose
solution followed by a 0.1 ml air bolus to force the agar-
ose out of the airways and into the alveoli. The inflated
lungs were dissected from the thoracic cavity and
mounted in agarose using the tissue embedding kit (Ala-
bama Research & Development, Model # MD2200).
Cores were placed into the slicer (Krumdieck Tissue Sli-
cer, Alabama Research & Development, Model #
MD4000) and the speed was set to produce slices at
approximately 1 per 30 seconds (thickness: 250 um).
Suitable airways on slices were selected on the basis of
the following criteria: presence of a full smooth muscle
wall (i.e., cut perpendicular to direction of airway), pre-
sence of beating cilia to eliminate blood vessels, and
unshared muscle walls at airway branch points to elimi-
nate possible counteracting contractile forces. Slices
were then transferred to incubating buffer and incubated
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at 37°C on a rotating platform. Trauma caused by tissue
slicing contracts the airway presumably by the release of
mediators. The incubation buffer was therefore changed
every 30 min for 4 hr to remove any constrictor media-
tors released from the tissue that prevents the airway
from relaxing to baseline, and then every 24 hr as indi-
cated. On the next day (18 hr later), slices were washed
again with fresh medium.

Lung slices were then placed in a 12-well plate in 1.0
ml assay buffer. The airway was located using a micro-
scope (Nikon ECLIPSE, Model # TE2000-U; Mag.: x100)
and the slice was held in place using a platinum weight
with nylon attachments. Media was added for baseline
measurements. The airway was positioned so a live
video feed (Evolution QEi; Model # 32- 0074A-130
video-recorder) could be viewed. A baseline image was
taken followed by the administration of the 1.0 uM con-
centration of oxytocin. Images were collected after 4
min or after no further contraction. The airways were
then administered a 1.0 uM concentration of carbachol
followed by the collection of images.

Airway lumen size was measured using a macro writ-
ten within Image Pro-Plus (version 6.0) software (Media
Cybernetics) and given in units of um2. After functional
studies, the area of each airway at baseline and at the
end of each dose of agonist was calculated using the
same macro written within Image Pro-Plus software.
Data were plotted as percentage contractions (100 - (%
Initial Airway Size)) for each agonist. Data were
expressed as means + SEM. Statistical difference was
shown by using a paired ¢ test.

Results
Expression of total mRNA for the oxytocin receptor
Primary human airway smooth muscle monolayers from
healthy donors were cultured with IL-13 or a naturally
occurring mutant form IL-13R130Q for 0, 6 hr or 18 hr
at 50 ng/ml after serum deprivation for 24 hr. Total
RNA was isolated, reverse transcribed and used in real
time PCR analysis for oxytocin receptor which revealed
that oxytocin receptor was expressed in primary airway
smooth muscle cells, and the expression was increased
by IL-13 (2 fold) and by IL-13R130Q (2 fold) at 6 hr
and approximately 3.5 fold at 18 hr (Figure 1A). In par-
allel, airway smooth muscle cells were also treated with
tumor necrosis factor alpha (TNFa) for 0, 6 hr or 18 hr
at 10 ng/ml. Total mRNA expression for oxytocin
receptor showed that TNFa increased expression of
oxytocin receptor by approximately 5 fold at 6 hr and 7
fold at 18 hr as compared with that obtained from dilu-
ent-treated cells (Figure 1B).

To characterize the expression of oxytocin receptor
across various tissues, real time PCR was performed to
detect oxytocin receptor in normal tissues. The highest
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Figure 1 Real time PCR (TagMan®) analysis showing the
quantity of oxytocin receptor normalized to 18 S and relative
to untreated in primary human airway smooth muscle cells
from normal donors when treated with IL-13 or IL-13R130Q (A)
and TNFa (B) for 6 hr and 18 hr. * Significant difference between
treated and untreated conditions (p < 0.05), but not between the
two treated conditions; **Significant difference between treated and
untreated conditions (p < 0.05), as well as between the two treated
conditions.

expression was detected in breast, followed by male caval
vein and penis and uterus. The basal expression level was
modest for the majority of normal tissues, including nor-
mal lung. These data suggest that OXTR expression in
lung occurs at low levels in the basal state (Table 1).

Cytokines increase oxytocin receptor expression in
HASMCs

In order to confirm the stimulatory effect of IL-13 and
TNFo on oxytocin receptor at the protein level, flow
cytometry was performed. As shown in Figure 2, expres-
sion of oxytocin receptor was significantly augmented in
cells treated with either TNFa (10 ng/ml) or IL-13 (50
ng/ml) for 24 hr with a net 43 + 2.8% and 16.7 + 6.8%
increase over basal, respectively (P < 0.05, n = 9).
Increases in oxytocin receptor proteins by TNFa or IL-
13 correlated with changes in total mRNA levels
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(Figures 1A and 1B), suggesting that inflammatory cyto-
kines possibly upregulate oxytocin receptor in HASMCs
at the transcriptional level.

Inflammatory cytokines modulate oxytocin-evoked
calcium mobilization

We next determined whether oxytocin receptors
expressed on the surface of HASM cells were functional
by assessing oxytocin effects on mobilization of intracel-
lular calcium and whether oxytocin calcium responses
were modulated by cytokines. As shown in Figure. 3A
and 3B, oxytocin (100 nM) induced a rapid increase in
intracellular calcium concentration reaching 30 + 11 nM
that was significantly enhanced in IL-13-treated cells to
117 £ 18 nM (n = 9, P < 0.05) (Figure 4). Interestingly,
although TNFo was more effective in increasing oxytocin
receptor expression, oxytocin had no modulating effect
on oxytocin-induced calcium responses in HASM cells.
In contrast, TNFa significantly increased calcium signals
in response to bradykinin from 454 + 24 nM to 660 + 59
nM (n = 3 different cell lines, P < 0.05).

Oxytocin induces force generation and airway narrowing
in murine tracheal ring and lung slices, respectively
We have previously shown that isolated murine tracheal
rings represent an interesting ex vivo model to investigate
the factors and the mechanisms that modulate airway
smooth muscle responsiveness [32-34]. As shown in Figure
4, oxytocin elicited a rapid contractile response in murine
tracheal rings (0.4 £+ 0.06 g, n = 8, P < 0.05). The contrac-
tile response induced by oxytocin was sustained for 30 min
(data not shown) but was much less robust as compared
with that induced by carbachol, reaching 25% when
expressed as an percentage (%) of the responses induced
by 10 M carbachol (1.57 + 0.1 g). These data show that
oxytocin is an effective contractile agonist in the airways.
We also found that murine intra-pulmonary airways
narrowed 16.2 + 4.1% from baseline after the adminis-
tration of 1.0 uM oxytocin. In separate experiments, the
effects of oxytocin on carbachol-mediated force genera-
tion were examined. The airway was contracted maxi-
mally to oxytocin, and then carbachol was added.
Carbachol further narrowed the airway to 62.4 + 5.0%
from baseline. Thus, the oxytocin contraction was 26%
as effective as carbachol but does suggest that oxytocin
has a contractile effect on airway smooth muscle in
murine intra-pulmonary airways (Figure 5).

Oxytocin levels in BAL samples from asthmatic and
healthy subjects

The goal of these experiments was to assess whether
oxytocin levels are determined and detected in the BAL
of healthy subjects and those with asthma. As shown in
Table 2, oxytocin levels are present in BAL fluid from
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Table 1 The expression of oxytocin receptor across various tissues as measured by real time PCR. The expression is

normalized to 18 S.

Total RNA Human 18 S Qty adjusted

Total RNA Human 18 S Qty adjusted

Adrenal, Female, Adult 1

Aorta, Female, Fetal 3.1
Bladder, Male, Adult 34
Bladder, Female, Fetal 54
Bladder, Male, Fetal 72
Brain, Female, Fetal 103
Brain, Male, Adult 9.0
Brain, Male, Fetal 26
Brain, Occipital Cortex, Male, Adult 116
Brain, Parietal Cortex, Male, Adult 83
Breast, Female, Adult 160.2
Caval Vein, Male, Adult 253
Cervix, Female, Adult 17
Colon, Ascending, Female, Adult 124
Colon, Descending, Female, Adult 1
Colon, Female, Fetal 26
Colon, Male, Adult 32
Colon, Male, Fetal 19
Heart, Female, Adult 0.16
Heart, Female, Fetal 12
Heart, Left Atrium, Male, Adult 0.86
Heart, Male, Adult 033
Kidney, Female, Fetal 5.7
Kidney, Female, Adult 3.1
Skin, Female, Adult 092
Skin, Female, Fetal 26
Skin, Male, Adult 1
Spleen, Female, Adult 18
Spleen, Female/Male pooled, Fetal 77
Spleen, Male, Adult 24
Stomach, Female, Adult 0.18
Stomach, Female, Fetal 6.2
Stomach, Male, Adult 0.6
Stomach, Male, Fetal 39

Kidney, Male, Adult 2.7
Kidney, Male, Fetal 44
Larynx, Male, Adult 58
Larynx, Male, Adult 33
Liver, Female, Adult 044
Liver, Female, Fetal 13
Liver, Male, Adult 0.6
Liver, Male, Fetal 2
Lung, Female, Adult 1.9
Lung, Female, Fetal 1.8
Lung, Male, Adult 35
Lung, Male, Fetal 83
Lymph Node, Male, Adult 6.6
Ovary, Female, Adult 115
Pancreas, Male, Adult 0.28
Parotid, Female, Adult 041
Penis, Male, Adult 253
Pericardium, Male, Adult 2.7
Placenta, Adult, Female 6
Prostate, Male, Adult 42
Rectum, Male, Adult 0.78
Skeletal Muscle, Female, Fetal 18
Skeletal Muscle, Male, Adult 0.2
Skeletal Muscle, Male, Fetal 24
Testes, Male, Adult 86
Thymus, Male and Female, Fetal 1.6
Thymus, Male, Adult 1.7
Thyroid, Female, Adult 13
Tongue, Male/Female, Adult 19
Trachea, Female, Adult 5.5
Uterus, Female, Adult 13.7
Colon, Female, Adult (Top) 3
Larynx, Male, Adult (Normal) 55

both normal subjects and those with asthma (n = 10 in
each group) but no significant changes were detected
between these cohorts. Further, there was no gender dif-
ferences in oxytocin levels observed. Oxytocin levels in
sputum supernatant did not differ between asthmatics
and healthy control subjects (median oxytocin levels
13.2 mcg/ml and 12.4 mcg/ml, respectively, p = 0.97).
Multivariable analyses confirmed that there was no sig-
nificant difference in oxytocin levels even after control-
ling for age, sex, percent predicted forced expiratory
volume in one second, and inhaled corticosteroid dose.

Discussion
Oxytocin regulates gonadal function such as labor-asso-
ciated uterine contractions and milk discharge during

lactation [1], but the role of oxytocin in other tissues
remains unexplored. Evidence shows that the incidence
of asthma switches at puberty from male to female pre-
dominance, and in adult asthma the ratio is about 2:1 in
favor of women [38,39] and that asthma worsens in
about 30% of pregnant women [9]. Whether oxytocin
plays a role in determining gender susceptibility to
asthma remains unknown. Our present study demon-
strates the existence of functional oxytocin receptors on
HASMCs and their regulation by pro-inflammatory
cytokines known to be involved in asthma pathogenesis.
Further, we report that oxytocin induced force genera-
tion and contractile responses in isolated murine tra-
cheal rings [32-34] and lung slices [40,41]. These data
suggest that expression of oxytocin receptor (OXTR) on
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Figure 2 (A) Representative flow-cytometric analysis of
oxytocin receptor expression in basal and HASM cells exposed
to 50 ng/ml IL-13 or 10 ng/ml TNFa for 24 hr. (B) Graphical
representation of the data as percentage increase in mean
fluorescence intensity over basal. *P < 0.05 as compared with
untreated cells, n = 9.

HASMC s can be differentially modulated by inflamma-
tory cytokines in HASMCs, a mechanism that may con-
tribute to the altered airway responsiveness observed in
asthma assuming that such receptor changes would
occur in vivo.

The study of the molecular mechanisms regulating the
expression of oxytocin receptor remains complex
[42,43]. Most studies that attempt to elucidate the tran-
scriptional regulation of oxytocin receptors have been
performed in myometrial and uterine cells. Using these
models, investigators found that OXTR expression was
downregulated by IL-1B, IL-6 but not by TNFa [44,45].
Others found that lysophospholipids increased transla-
tion of oxytocin receptor possibly as a consequence of
increased mRNA stability [46]. Our report is the first to
demonstrate that expression of oxytocin receptor is
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Figure 3 Effect of IL-13 on oxytocin-evoked cytosolic free Ca%t
concentration ([Ca®*];). IL-13 (50 ng/ml) was pre-incubated for 24
hr before cells were exposed to 100 nM oxytocin. (A) Typical ca™t
traces from cells incubated in the absence or presence of IL- 13. (B)
Graphical representation of values for the Ca®" peak phase from
cells incubated in the absence or presence of IL-13. Results are
expressed as the net increase in [Ca®"]; over basal (unstimulated)
levels. Values are means + SE of 3 separate experiments and are
significantly different from oxytocin only control (P < 0.01). TNFa
did not have a modulatory effect on oxytocin-induced calcium
response in these cells.

increased in HASMCs treated with pro-inflammatory
cytokines, either TNFa or IL-13. An increased gene
transcription was detected by the real time PCR data
demonstrating a rapid effect of these cytokines on oxy-
tocin receptor expression. In addition, both TNFo and
IL-13 up-regulated receptor expression at the protein
level with a 7 fold and 3.5 fold increase over basal,
respectively. Unexpectedly, IL-13, but not TNFa,
enhanced oxytocin-evoked calcium responses in
HASMCs. The mechanisms responsible for the differen-
tial effects of TNFo and IL13 to enhance oxytocin-
evoked calcium responses remain unclear. This is sur-
prising given evidence that IL-13 and TNFoa comparably
enhance calcium signals induced by bradykinin and
acetylcholine [19,34,47,48]. Our data does support the
hypothesis that TNF and IL-13 have disparate effects on
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Figure 4 Representative trace showing the contractile response induced by oxytocin in isolated murine tracheal rings. Similar responses
were observed in eight different tracheal rings. The insert shows the contractile responses expressed as means + SEM from 8 different tracheal
rings stimulated with 1 uM oxytocin or 10 pM carbachol (p < 0.05 compared to basal values, statistical significance using ANOVA).
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Figure 5 Effect of oxytocin (OT) on murine intra-pulmonary airways with respect to a sub-maximal dose of carbachol (CCh). (A)
Representational images show a murine airway at baseline (0% contraction), following 1.0 uM OT (20.3%) and 1.0 uM CCh (65.0%). (B) Maximum

contraction of individual airways following OT and CCh. Mean + SEM values of the data shown.
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Table 2 Oxytocin levels in BAL samples from asthmatic and healthy subjects
Asthmatics Age FEV1%pred  FEV1/FVC Bronchodilator PC20 (mg/ Gender GINA Inhaled Oxytocin
response (% change dl) Corticosteroid BDP
from baseline) equivalent

1 31 120 82 3 0.1 M 1 0 14.0

2 47 96 73 16 16 F 1 0 129

3 40 69 60 15 0.7 M 1 0 124

4 43 86 80 8 1.6 M 1 0 134

5 52 72 68 12 24 F 1 0 213

6 28 90 85 6 06 F 1 0 150

7 31 80 72 15 32 M 1 0 10.1

8 41 68 66 18 14 F 1 0 109

9 36 86 83 6 02 F 2 400 195

10 68 97 60 15 05 F 2 400 9.5
Mean + SD 41.7 +11.9 864 = 158 729+94 114 £5.2 123+ 1.0 139 =39

Controls

1 26 96 83 32 M 0 1.7

2 30 12 88 0 32 F 0 124

3 43 122 82 32 F 0 15.6

4 55 100 78 1.7 32 F 0 123

5 61 97 71 -4.8 32 F 0 114

6 43 125 85 0 32 M 0 174

7 47 108 85 0 32 M 0 123

8 49 102 88 0 32 M 0 156

9 45 106 78 43 32 F 0 17.1

10 23 94 80 32 32 F 0 12.2
Mean + SD 42.2 + 124 106.2 £ 10.7 81.8 £5.2 044 + 24 32+0 13.8 £ 23

OXTR expression and that agonists with less efficacy at
inducing calcium mobilization may be enhanced by
increases in receptor expression rather than by pro-
cesses that amplify downstream pro-contractile signaling
pathways. Accordingly, we and others also reported that
changes in bradykinin receptor expression in part
explained the enhancing effects of cytokines (TNFa or
IL-1B) on agonist-evoked calcium responses [49,50]. In
some but not all instances, modulation of receptor
expression may not correlate with receptor function in
ASM cells. In previous reports, we and others found
that although calcium signals to acetycholine were sig-
nificantly increased by TNFa, muscarinic receptor den-
sity were significantly reduced in TNFa-treated cells
[51,52]. Collectively, these data suggest that cytokine-
induced changes in receptor function may be uncoupled
from cell surface receptor density. Additionally, signaling
pathways such as alterations in calcium sensitization
could also contribute to the observed differences in
cytokine-induced agonist responsiveness but such
mechanisms require further study.

We show that oxytocin receptors are expressed on
HASMC s and cytokines modulate receptor expression
[48]. In myometrium cells, TNFa enhanced oxytocin-
induced calcium transients [20]. Whether TNF effects
were due to alterations in receptor expression was not
addressed. These investigators, however, found that
CD38 played a critical role in the enhanced oxytocin-
induced calcium responses in myometrium cells. Inter-
estingly, both TNFa and IL-13 also upregulated CD38
expression and function in HASMCs [48,53-56]. Because
IL-13, but not TNFa, enhanced oxytocin calcium
responses in HASMCs, our findings possibly suggest
that both CD38-dependent and independent pathways
may contribute to cytokine-induced alterations in oxyto-
cin responses.

Using two ex vivo models to study airway responsive-
ness, namely, isolated tracheal rings [35] and mouse
lung slices [40,41], we found that oxytocin induced
ASM contraction and airway narrowing, suggesting that
oxytocin serves as a bronchoconstrictor. Whether these
responses, which are modest in magnitude compared to
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those induced by carbachol, are clinically relevant
remains unknown. Our study, however, shows that these
bronchoconstrictor responses induced by oxytocin were
dramatically increased by IL13. However, we failed to
detect any effects of IL-13 on oxytocin-evoked contrac-
tile responses (Amrani et al., unpublished observations).
The reasons explaining the discordance observed
between IL-13 effects on cultured cells and on ex vivo
tissue remains unexplained but could reflect that IL-13
effects in complex tissue provides negative homeostatic
effects that dampens IL13’s ability to enhance oxytocin-
induced bronchoconstriction. Alternatively, the diffusing
barrier of the tissue thickness mitigates the ability of IL-
13 and/or oxytocin to stimulate their cognate receptors.
Accordingly, contractile responses to oxytocin could be
modulated by effects on airway epithelial cells and/or
vascular endothelium [16] or by subsequent production
of relevant factors such as nitric oxide [43]. Further stu-
dies are needed to address whether IL-13 modulates
oxytocin effects in other lung cells.

Given our observations that oxytocin induced airway
smooth muscle contraction and that cytokines increased
expression of the receptor, we characterized whether
BAL fluid derived from healthy subjects as well as sub-
jects with asthma had detectable oxytocin levels. Our
studies revealed that detectable oxytocin levels were
found in the BAL fluid in both cohorts; however, in
stable asthma, there was no increase in oxytocin levels
in BAL fluid. We postulate that the mechanism by
which oxytocin may play a role in asthma in acute
exacerbations concerns enhanced vascular permeability
into tissue where the receptor number in ASM but not
the ligand are markedly increased. To address this
hypothesis, OXTR expression in ASM tissue derived
from subjects with acute exacerbation would be required
but such studies are beyond the scope of the current
study.

In summary, our report provides the first evidence of
a contractile role of oxytocin in the airways. Future stu-
dies will address the nature of the common transcrip-
tion factors as well as signaling pathways by which both
cytokines regulate the transcription of the oxytocin
receptor gene. Since gender disparity in asthma is well
recognized, studies could also address whether differen-
tial OXTR expression in the airways between men and
women in part explains gender differences in asthma
prevalence and morbidity or whether differential OXTR
expression mediates asthma morbidity in pregnancy.
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