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Abstract
Background: No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to 
investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin 
(BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production.

Methods: BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, 
histologic changes and deposition of collagen were analyzed.

Results: Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic 
inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). 
Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and 
macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase 
in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate 
to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung 
injury.

Conclusion: Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the 
down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines.

Background
Acute lung injury (ALI) is characterized by diffuse alveo-
lar injury, profound inflammation, increased vascular
permeability, and alveolar flooding, which together may
result in acute respiratory failure [1,2]. A significant pro-
portion of patients with ALI exhibit severe fibroprolifera-
tion 10-14 days after clinical presentation. Presently, no
effective therapy for reversing or retarding the fibrotic
course of the disease is available, despite the high rates of
mortality associated with ALI and fibrosis. One possible
way to reduce the rate of mortality is to alter the inflam-
matory and repair processes that are activated following

lung injury. During the past few years, several studies
have demonstrated that bone marrow-derived mesenchy-
mal stem cells (BMDMSCs) can localize to and/or partic-
ipate in the development of new lung tissue [3-5]. In
addition, BMDMSC transfer has been attempted as a
therapeutic strategy in experimental lung injury and
fibrosis. Recent studies involving the administration of
stem cells for the treatment of experimental ALI, fibrosis,
and emphysema have shown promising results [6,7].

Endotracheal challenge in mice with bleomycin (BLM)
represents a well established model of ALI resulting in
pulmonary fibrosis that resembles idiopathic pulmonary
fibrosis [8,9]. The process occurs in three stages: alveolar
epithelial cell death, inflammation, and enhanced colla-
gen deposition with fibroblast and smooth muscle cell
proliferation [10-12]. At present, the mechanism by
which BLM-induced lung injury is attenuated following
mesenchymal stem cell (MSC) administration is unclear.
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MSCs, which are thought to function as stem cells in the
lungs, may limit the injurious effects of BLM by replen-
ishing alveolar epithelial type II cells [4-6], which play
various roles in alveolar fluid balance, coagulation/fibrin-
olysis, and host defense [13].

One alternative mechanism is that MSCs may change
the microenvironment of the lung at sites of engraftment
[6,14,15], possibly by modulating the production of solu-
ble factors, including transforming growth factor-beta
(TGF-β), interleukin (IL)-1α, basic fibroblast growth fac-
tor, platelet-derived growth factor, and IL-6, all of which
are considered to be possible mediators of lung injury and
pulmonary fibrosis [16-20]. The levels of several cytok-
ines, including vascular endothelial growth factor
(VEGF), hepatocyte growth factor, and granulocyte col-
ony-stimulating factor, have been shown to increase in
the lungs during ALI [21-23]. These cytokines induce
bone marrow stem cell mobilization and differentiation
both in vivo and in vitro [14,22,24,25]. In addition to solu-
ble mediators, BLM induces an increase in the produc-
tion of free radicals, including nitric oxide (NO) [26-28].
NO reacts rapidly with oxygen-centered superoxide radi-
cals to form peroxynitrite, a potent oxidizer that may
contribute to tissue injury in ALI and fibrosis [29,30]. We
previously reported that the expression of NO synthase
increased in a BLM-induced lung injury model [31].
However, few studies have demonstrated a time-depen-
dent effect of stem cells on BLM-induced NO production
and inflammatory cytokine expression. Thus, in this
study, we measured the levels of various inflammatory
cytokines and NO metabolites in BLM-treated rats over
time. We also evaluated the therapeutic effects of
BDMSC transfer on BLM-induced ALI and fibrosis, and
the changes in inflammatory cytokine and NO produc-
tion.

Methods
BM-derived MSCs isolation and in vitro culture-expansion 
and evaluation of surface marker and potentials to 
mesenchymal differentiation
Fresh bone marrow cells were harvested from the femurs
of 6 weeks-old male Sprague-Dawley rats (Charles River
Technology Inc.) by flushing DMEM (Gibco BRL, Grand
Island, NY, USA) containing 1% penicillin-streptomycin
(Gibco BRL) according to the method previously
described [32,33]. After washing once with DMEM, the
cells were seeded into 75 cm2 tissue culture flask at 1 ×
106 cells/mL in DMEM medium containing 10% fetal
bovine serum (FCS, Gibco BRL) supplemented with
HEPES (ATCC, Manassas, VA, USA), nonessential amino
acids (Cellgro, Herndon, VA, USA), and pyruvate (Invit-
rogen, Carlsbad, CA, USA), and then cultured at 37°C
humidified 5% CO2 incubator. After 48 hours, nonadher-
ent cells were removed. The culture medium was

changed every 2 days until adherent cells reached sub-
confluence, then they were detached with 0.25% trypin-
EDTA solution, and re-seeded at 4 × 103 cells/cm2. The
adherent cells after seventh passage were used for mesen-
chymal stem cells. The surface phenotypes were examed
using antibodies against FITC-conjugated CD44H (Pgp-
1, BD Biosciences Pharmingen, San Diego, CA USA),
CD90 (Thy-1, BD, Franklin Lakes, NJ, USA), CD11b
(Integrin, BD), PE-conjugated CD106 (VCAM-1, BD),
and CD45 (BD). The cell surface marker phenotype of
these MSCs was shown to be for CD45-, CD106-,
CD44H+, CD90+, and CD11b+ (Figure 1). Culture of
bone marrow MNCs produced a mono-morphic conflu-
ent adherent layer of elongated fibroblast-like cells that
survived multiple passages in mesenchymal culture con-
ditions (Figure 2A). Potentials of the rat MSCs were eval-
uated as differentiation into adipocytes (Figure 2B),
chondrocytes (Figure 2C), and osteocytes (Figure 2D).
Rat MSCs were induced to differentiate into osteocytes
by treating confluent monolayer in DMEM medium con-
taining 0.1 M dexametasone (Sigma), 50 M Ascorbate
(Sigma), 10 mM β-Glycerol phosphate (Sigma), 10% FBS
for 3 weeks. Osteogenic differentiation was demonstrated
by the increase in alkaline phosphatase and the accumu-
lation of calcium. Alkaline phosphatase was detected his-
tologically, and calcium was stained by Von Kossa
staining. For chondrogenic differentiation, 2 × 105 cells
were added to 500 ul of DMEM medium containing 10-7

M dexametasone (Sigma), 50 M Ascorbic Acid 2-Phos-
phate (Sigma), 1 ug/mL transforming growth factor
(TGF)-β (R&D System, Mineapolis, MN, USA). The cells
were grown as a pelleted micro-mass for 3 wks. The cell
pellets were stained with toluidine blue. To induce adipo-
genic differentiation, rat MSCs were cultured in DMEM
medium containing 0.1 M dexamethasone (Sigma), 0.5
mM methyl-isobuthylxanthine (Sigma), 10 g/ml insulin
(Sigma), 100 mM indomethacin (Sigma), and 10% FBS
(Adipogenic induction medium) for 48-72 hours, And the
medium was changed to DMEM medium containing
insulin (10 g/ml), and 10% FBS (Adipogenic maintenance
medium) for 24 hours. The cells were then re-treated
with Adipogenic induction medium. Thereafter the cul-
ture was maintained in Adipogenic maintenance medium
for 1 week before fixation. Adipogenic differentiation was
demonstrated by the accumulation of lipid vesicles by Oil
red O (Sigma) staining. At the end of the second passage,
bone marrow derived MSCs were successfully differenti-
ated along osteogenic, chondrogenic, and adipogenic lin-
eages, using methods described above (Figure 2).
Induction of lung injury with BLM and treatment with 
BMDMSCs
Specific pathogen-free, 6-week-old female Sprague-Daw-
ley rats (Orientbio Inc., Seongnam-si, Korea) were given
3 mg/kg BLM hydrochloride (Nippon Kayaku, Tokyo,
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Japan) in 5 ml of normal saline using an ultrasonic nebu-
lizer (NEU12; mean mass median diameter: 4.5 mm, out-
put: 0.15-0.3 ml/min; Omron, Tokyo, Japan; Figure 3) as
described previously [31]. On day 4, the rats were anes-
thetized with isofluorane gas, and 0.1 ml of the
BMDMSC suspension (107/ml) was infused via a tail vein.
The sham control rats were treated with endotoxin-free
water. The animals were maintained at 22°C and 20-50%
humidity, with a 12-h light period; food and water were
provided ad libitum. The animals were housed in a
pathogen-free laminar flow cabinet. On days 0, 7, 14, 21,
and 28, rats were killed using an overdose of a ketamine
(Yuhan Corp., Seoul, Korea) and xylazine (Bayer Corp.,
Shawnee Mission, KS) mixture. The institutional animal
care and use committee of Soonchunhyang University
Bucheon Hosptial approved this study.
Bronchoalveolar lavage (BAL) and preparation of the lung 
tissues for analysis of the dry/wet ratio, and histological 
examination
After the animals were killed, the left main bronchus was
tied with a string. Following BAL of the right lung, right
lungs were removed for protein, or histological analysis.
The left lung lobes were removed for wet/dry ratio analy-
sis as previously described [31]. After the wet weight of
the excised left lobe was measured, the lobe was placed
with a desiccant in an oven at 60°C and reweighed 4 days
later. BAL was performed four times using a 1 ml infusion
of phosphate-buffered saline (PBS) with withdrawal via a

cannula inserted into the trachea. The cells in the bron-
choalveolar lavage (BAL) fluid were counted using a
hemacytometer. The BAL fluid was centrifuged at 500 × g
for 10 min and the supernatant was stored at -70°C. Dif-
ferential cell counts were performed using slides pre-
pared by cytocentrifugation and Diff-quick staining
(Scientific Products, Gibbstowne, NJ). Approximately
500 cells were counted. The right lung was removed from
each animal and fixed in 4% paraformaldehyde. The spec-
imens were then dehydrated and embedded in paraffin.
For histological examination, 4-μm-thick sections were
cut using a rotary microtome, placed on glass slides,
deparaffinized, and sequentially stained with hematoxylin
and eosin (H&E).
Measurement of collagen using Masson's Trichrome stain 
and Sircol collagen assay
Sections of lung tissue (4 μm thick) were fixed in Bouin's
solution, stained for 1 h at 56°C, washed in tap water for 5
min at room temperature, and stained for 10 min with
Weigert's iron-hematoxylin. Masson's thrichrome stain
was done as previously described [34]. The total amount
of soluble collagen was assessed using a Sircol Collagen
Assay Kit according to the manufacturer's instructions
(Biocolor, Carrickfergus, Northern Ireland, UK). Briefly,
100 μl of each lung tissue lysate and reference collagen
standard were mixed with 1 ml of Sircol dye for 30 min
and then centrifuged at 10,000 rpm for 5 min to precipi-
tate the collagen-dye complex. After decanting the sus-

Flowcytometric Analysis of rat mesenchymal stem cells wased in the study
Figure 1 Flowcytometric Analysis of rat mesenchymal stem cells wased in the study. The cell surface marker phenotype of these MSCs was 
shown to be for CD45-, CD106-, CD44H+, CD90+, and CD11b+.
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pension, the droplets were dissolved in 1 ml of Sircol
alkali reagent and vortexed. The absorbance of the solu-
tion was then read at 540 nm. All measurements were
performed in quadruplicate. The amount of collagen was
calculated from the reference collagen standards, and the

minimum detection limit for total soluble collagen was 5
μg/ml. The inter- and intra-assay coefficients of variance
were less than 15%. The amount of collagen was
expressed as a ratio by normalization to the protein con-
centration of each specimen.

Variable differential potential of rat mesenchymal stem cells depending on culture method
Figure 2 Variable differential potential of rat mesenchymal stem cells depending on culture method. (A) Culture-expanded mesenchymal 
stem cells showed a fibroblast-like morphology following culture expansion in vitro (×100). (B) Presence of adipocytes was demonstrated by oil red O 
staining of cytoplasmic inclusions of neutral lipids (×200). (C) Chondrocytes were demonstrated by toluidine blue staining (×100). (D) Calcium in the 
differentiated osteocytes was showed by Von Kossa staining (×100).

 

Schematic diagram of the experimental protocol
Figure 3 Schematic diagram of the experimental protocol. Specific pathogen-free, 6-week-old female SD rats (200-250 g body weight) were treat-
ed with 3 mg/kg bleomycin (BLM) dissolved in 5 ml of endotoxin-free water via inhalation. Bone marrow-derived mesenchymal stem cells (1 × 106) 
were administered via a tail vein on day 4 after BLM treatment. The rats were killed on days 0, 7, 14, 21, and 28. Lung specimens were obtained before 
and after bronchoalveolar lavage as described in the Materials and Methods.
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Measurement of the IL-1β, TGF-β, VEGF, nitrite, and nitrate 
concentrations in the lung tissue lysates and of IL-6 and 
TNF-α in the BAL fluids
The extracted lung tissues were homogenized in a protein
lysis solution containing 50 mM Tris-HCl (pH 7.4), 1%
NP-40, 50 mM NaCl, 0.5 mM ethylene diamine tetraa-
cetic acid (EDTA), and 100 mM phenylmethylsulfonyl
fluoride (PMSF) in distilled water and incubated on ice
for 20 min. The protein concentration in each sample was

determined using a BCA Kit (Pierce Biotechnology,
Rockford, IL). The IL-1β (Immuno-Biological Laborato-
ries Co. LTD, Gunma, Japan), TGF-β (R&D systems, Min-
neapolis, MN) and vascular endothelial growth factor
(VEGF) levels in the lung tissue lysates and IL-6 and
TNF-α concentrations in the BAL fluid samples were
measured using quantitative sandwich ELISA kits accord-
ing to the manufacturers' protocols (R&D Systems, Min-
neapolis, MN, for VEGF; BD Biosciences for IL-6 and
TNF-α). The levels of nitrite and nitrate in the BAL fluids
were also quantified by ELISA (Biosource International,
Camarillo, CA). The minimum detection limits for IL-1β,
TGF-β, VEGF, IL-6, TNF-α, nitrite, and nitrate were 1.67
pg/ml, 1000 pg/ml, 1000 pg/ml, 19.5 pg/ml, 15.6 pg/ml,
1.56 μmol/l, and 0.54 μmol/l, respectively. Values below
these limits were assigned a value of zero for the purpose
of statistical analysis. The inter- and intra-assay coeffi-
cients of variance were less than 15%.
Fluorescence in situ hybridization (FISH)
The localization of male Y chromosome sequences in 2-
μm-thick paraffin-embedded sections of rat lung tissue
was performed using an ID Labs Kit and a mouse Y chro-
mosome paint probe (London, England, UK) as described
previously [33,35]. The sections were counterstained with
4', 6-diamidino-2-phenylindole and 1, 4-phenylenedi-
amine in PBS and glycerol (125 ng/ml) and photographed
under a Leica (Deerfield, IL) RX-DMV upright fluores-
cent microscope attached to a digital camera (Cooke Sen-
sicam, Melville, NY).
Statistical analysis
The data are expressed as the mean ± standard error.
SPSS version 10.0 (SPSS, Chicago, IL) was used to per-
form all statistical analyses. The study groups were com-
pared using the Kruskal-Wallis test. When significant
differences were found, the Mann-Whitney U-test was
used to compare the two samples. Differences were con-
sidered significant at p < 0.05.

Results
Effect of BMDMSC transfer on BLM-induced pulmonary 
edema, body weight and mortality
Sham rats continuously gained weight till the end of the
study (28 day) while bleomycin - treated rats did not gain
weight. BMDMSC transfer increased weight in the bleo-
mycin - treated rats (Figure 4A). We decided to begin the
investigational phase of the study 1 week after the start of
intravenous infusion of BMDMSC (Figure 4B). In the
bleomycin - treated rats (n = 30), the rats died consis-
tently every week. In contrast, although some rats in the
BMDMSC transferred rats died in the first 10 days after.
Bleomycin-treated rats showed higher mortality rate
compared to the sham - treated rats while BMDMSC
transfer attenuated the mortality of the bleomycin -
treated rats (p < 0.05; Figure 4B). To quantitatively assess

Effect of BMDMSC transfer on body weight and survival rate
Figure 4 Effect of BMDMSC transfer on body weight and survival 
rate. (A) BMDMSC transfer increased body weight gain in the bleomy-
cin - treated rats. (B) Bleomycin - treated rats showed higher mortality 
rate compared to the sham - treated rats while BMDMSC transfer atten-
uated the mortality of the bleomycin - treated rats.

 

Effect of bone marrow-derived mesenchymal stem cell (BM-
DMSC) transfer on the bleomycin (BLM)-induced increase in 
the lung wet/dry ratio
Figure 5 Effect of bone marrow-derived mesenchymal stem cell 
(BMDMSC) transfer on the bleomycin (BLM)-induced increase in 
the lung wet/dry ratio. The transfer of BMDMSCs significantly re-
duced the BLM-induced increase in the wet/dry ratio on day 7. * and ** 
indicate p < 0.05 and p < 0.01, respectively.
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the degree of pulmonary edema following BLM treat-
ment, the wet/dry weight ratio of the left lung was mea-
sured in each animal. The BLM-treated rats had a
significantly higher wet/dry weight ratio compared to the
sham-treated rats at day 7 (4.5 ± 0.4 vs. 3.6 ± 0.5, p = 0.04;
Figure 5); however, BMDMSC transfer significantly
decreased the ratio in the BLM-treated rats to the level in
the sham-treated rats (2.9 ± 0.3, p = 0.009).
Effect of BMDMSC transfer on the BAL cell profile and lung 
histology in the BLM-treated rats
The number of neutrophils in the BAL fluid of the BLM-
treated rats peaked at day 7 (p = 0.002) then steadily was
higher from day 14 to day 28 compared to the number in
the sham rats (p < 0.05; Figure 3A); however, BMDMSC
transfer significantly restored the BLM-induced increase
in the number of neutrophils to nearly the level in the
sham-treated rats. The number of lymphocytes rose sig-
nificantly at day 14 (p = 0.015) and continued to increase
up to day 28 following BLM treatment (p = 0.002). A sim-
ilar significant increase in the number of macrophages
was observed at day 28 in the BLM-treated rats compared
to the sham-treated rats (p = 0.015; Figure 6A). The
transfer of BMDMSCs significantly reduced the BLM
induced-increases in the number of lymphocytes and
macrophages in the BAL fluid (p < 0.05; Figure 6A), but
the suppressive effect was incomplete.

Histological analysis using H&E staining revealed exu-
dative changes and heavy infiltration of polymorphonu-
clear and mononuclear inflammatory cells such as
neutrophils and lymphocytes into the intra-alveolar and
interstitial spaces following BLM treatment from day 7 to
day 28 (Figure 6B). The transfer of BMDMSCs markedly
reduced the infiltration of inflammatory cells to the
extent observed in the sham-treated rats (Figure 6A).
Effect of BMDMSC transfer on collagen deposition in the 
lung tissues and the total amount of soluble collagen in 
lung extracts
To analyze collagen deposition in the lung, Masson's
Trichrome stain and the Sircol collagen assay were
applied to lung tissue sections and lysates, respectively.
Collagen deposition was detected in the interstitium of
the lungs following BLM treatment from day 7 to day 28.
The transfer of BMDMSCs nearly abrogated the deposi-
tion of collagen throughout the entire experimental
period (Figure 7A). Our histologic findings were con-
firmed by an analysis of the total amount of collagen in
lung tissue lysates by ELISA. The total amount of colla-
gen was doubled on day 7 following BLM treatment, and
was then maintained at the same level up to day 28 (p =
0.071-0.004; Figure 7B). The transfer of BMDMSCs
reduced the BLM-induced increase in the amount of col-
lagen to the level detected in the sham-treated rats (p =
0.04-0.016; Figure 7B).

Effect of BMDMSC on IL-6 and TNF-α in BAL fluid samples 
and IL-1β, TGF-β VEGF and NO metabolites in lung extracts
The level of IL-1β and VEGF in lung extracts prepared
from the BLM-treated rats peaked at day 7, and then
decreased slightly up to day 28. The level of TGF-β in the
lung extracts of the BLM-treated rats was maintained
throughout time course. All values were significantly ele-
vated compared to those in the sham-treated rats (p =
0.019-0.029, p = 0.015-0.002). The transfer of BMDMSCs
completely suppressed the increase in IL-1β, TGF-β and
VEGF after BLM treatment to the level in the sham rats
(p = 0.029-0.04, p = 0.052-0.004; Figure 8). The level of
IL-6 in the BAL fluid of the BLM-treated rats was also
two times higher than that in the sham-treated rats at day
7 (0.67 ± 0.18 vs. 0.26 ± 0.05 pg/μg of protein, p = 0.04).
The level then rose steadily up to day 21 (2.73 ± 0.69 pg/
μg of protein, p = 0.002) and remained relatively constant
up to day 28 (2.03 ± 0.36 pg/μg of protein, p = 0.002). The
transfer of BMDMSCs significantly reduced the BLM-
induced increase in IL-6 during the entire experimental
period (p = 0.04-0.026), but the suppressive effect was
incomplete (Figure 8C).

A similar increase in TNF-α following BML treatment
was observed. The level of TNF-α in the BAL fluid of the
BLM-treated rats rose significantly from day 7 to day 28,
becoming twice of that in the sham-treated rats (p = 0.04-
0.003; Figure 8D). BMDMSC transfer also restored the
BLM-induced increase in TNF-α to the level in the sham
rats at days 7 and 14, but had only a partial effect at days
21 and 28.

The presence of NO metabolites, including nitrite and
nitrate, indicates in vivo NO production in the airways
and lungs [36]. Increased nitrite and nitrate concentra-
tions were detected in lung extracts from the BLM-
treated rats compared to the levels in the sham-treated
rats (p = 0.002) at day 7 (Figure 9); thereafter, the levels
tended to decrease. The transfer of BMDMSCs signifi-
cantly reduced the BLM-induced increase in nitrate and
nitrite from day 7 to day 21 (p = 0.026-0.004).
Engraftment of donor-derived cells in the lungs after 
BMDMSC transfer
To demonstrate the localization of the infused BMDM-
SCs to the lungs, FISH using a rat Y chromosome paint
probe was used to identify the engraftment sites of the
male donor cells in the lungs of the BMDMSC-trans-
ferred rats. Relatively few cells were detected in lung tis-
sue that demonstrated a positive hybridization signal
against the Y chromosome. Donor cell showing Y chro-
mosome mainly localized in the alveolar epithelium of
the bleomycin (BLM)-treated rats following bone mar-
row-derived mesenchymal stem cell transfer (Figure 10B
and 10C). Donor-derived cells were sparsely detected at
day 28 in the lung tissues of the BLM-treated rats. On the
representative H&E stained serial section of lung tissue,
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(A) Time-dependent changes in the inflammatory cell profile in bronchoalveolar lavage (BAL) fluid
Figure 6 (A) Time-dependent changes in the inflammatory cell profile in bronchoalveolar lavage (BAL) fluid. Bleomycin (BLM)-induced in-
creases in the number of neutrophils, lymphocytes, and macrophages in the BAL fluid were significantly reduced between days 7 and 28 by the trans-
fer of BMDMSCs. * and ** indicate p < 0.05 and p < 0.01, respectively. (B) Effect of BMDMSC transfer on BLM-induced histologic changes in the lungs. 
Lung tissues were stained with hematoxylin & eosin on days 7, 14, 21, and 28. BLM treatment induced the intra-alveolar and interstitial infiltration of 
inflammatory cells. The extent of inflammation significantly decreased from day 7 to day 28 following BMDMSC transfer. Magnification = × 200.
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Effect of BMDMSC transfer on collagen deposition in lung tissues and the total amount of soluble collagen in lung extracts
Figure 7 Effect of BMDMSC transfer on collagen deposition in lung tissues and the total amount of soluble collagen in lung extracts. (A) 
Collagen deposition in the lungs was analyzed using Masson's Trichrome stain. (B) The Sircol collagen assay was used to measure the total amount of 
soluble collagen in lung tissue lysates. * and ** indicate p < 0.05 and p < 0.01, respectively.
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donor cell showing Y chromosome mainly localized in
the alveolar epithelium of the bleomycin (BLM)-treated
rats following bone marrow-derived mesenchymal stem
cell transfer (Figure 10D).

Discussion
The disease course of ALI is marked by three phases, exu-
dative, proliferative, and fibrotic, although inflammatory
and repair mechanisms occur in parallel, rather than in
series [1,2]. The exudative phase encompasses the first 7
days after injury, while the proliferative phase spans days

7-21, and the fibrotic phase occurs 2-4 weeks after the
initial pulmonary injury [1,2]. Previous experiments in
mice have demonstrated the protective effect of
BMDMSC transfer against BLM-induced fibrosis in the
lungs of animals 14 days after BLM treatment when given
at the beginning of ALI [6,15,23]. This prompted us to
evaluate the protective effect of this therapeutic strategy
against fibrosis, as well as against exudation and inflam-
mation in a time-dependent manner. In the present study,
BLM treatment increased the level of vascular permeabil-
ity as demonstrated by the increased wet/dry ratio at day

Effect of bone marrow-derived mesenchymal stem cell (BMDMSC) transfer on the levels of IL-6 and TNF-α in bronchoalveolar la-
vage fluid and IL-1β, vascular endothelial growth factor (VEGF), and TGF-β in lung lysates
Figure 8 Effect of bone marrow-derived mesenchymal stem cell (BMDMSC) transfer on the levels of IL-6 and TNF-α in bronchoalveolar lavage 
fluid and IL-1β, vascular endothelial growth factor (VEGF), and TGF-β in lung lysates. Bleomycin treatment significantly increased the levels of IL-
1β (A), VEGF (B), IL-6 (C), TNF-α (D), and TGF-β (E) between days 7 and 28. The increases in IL-1β, VEGF, IL-6, TNF-α and TGF-β were significantly reduced 
by the transfer of BMDMSCs. * and ** indicate p < 0.05 and p < 0.01, respectively.
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7 (Figure 3). Thereafter (days 14-28), the increase was
unremarkable (data not shown). This and our previous
data [31] indicate that BLM maximally increases vascular
permeability at an early stage of lung injury. On the same
day (day 7), lung inflammation was neutrophil-dominant
as reflected by BAL cell analysis and lung histological
analysis. The neutrophilic inflammation later changed to
lymphocyte- and macrophage-dominant inflammation
(days 21-28). Note that the amount of collagen, which was
assessed quantitatively and qualitatively, peaked at day 7
then remained constant up to day 28. This indicates that
inflammation and collagen deposition started concomi-
tantly at a very early stage of ALI following BLM adminis-
tration. Fibroproliferation is also an early response to
lung injury in human acute respiratory distress syndrome
(ARDS) and is an important clinical marker for late-stage
survival [37]. Although the pattern of lung inflammation
changed over time, the degree of fibrosis reflected the
increased level of collagen deposition throughout the
study period. In the present study, BMDMSC transfer at
day 4 following BLM inhalation significantly reduced the
BLM-induced increase in the wet/dry ratio, neutrophilic
infiltration, and collagen deposition to nearly the levels in
the sham-treated rats. These data indicate that
BMDMSC transfer may be effective and curative against

the ongoing inflammation-induced alveolar damage
caused by BLM inhalation.

In the present study, BMDMSCs from male Sprague-
Dawley rats were transferred to female recipients 4 days
after the inhalation of BLM. In our previous study, peak
levels of pulmonary edema and neutrophilic inflamma-
tion were detected between days 4 and 14 after BLM
inhalation [31]. This suggests that the condition of the
lungs in the BLM-treated rats at day 4 resembles clinical
ARDS in humans. Thus, we decided to transfer the
BMDMSCs 4 days after BLM treatment. Ortiz et al. [6]
observed that the administration of MSCs immediately
after challenge with BLM reduced the extent of inflam-
mation within the lung, but was ineffective when trans-
ferred 7 days after BLM challenge. We currently have no
explanation for the ineffectiveness of BMDMSC treat-
ment in late stage of lung injury.

BLM-induced lung injury is characterized by capillary
leakage and alveolar edema, which are hallmarks of ALI
[15-20,25]. The overexpression of VEGF in murine lung
induces widespread intra-alveolar edema, suggesting that
increased pulmonary vascular permeability in the early
stages of ALI may be caused, at least in part, by VEGF
overexpression [38]. VEGF was up-regulated in a murine
lipopolysaccharide (LPS)-induced ALI model, and the
changes in the balance between VEGF, angiopoietin-1,

The effect of bone marrow-derived mesenchymal stem cell (BMDMSC) transfer on the bleomycin (BLM)-induced increases in ni-
trate and nitrite in lung extracts
Figure 9 The effect of bone marrow-derived mesenchymal stem cell (BMDMSC) transfer on the bleomycin (BLM)-induced increases in ni-
trate and nitrite in lung extracts. BLM (n = 6) increased the nitrate (A) and nitrite levels (B) in lung extracts from day 7 to day 21; however, the effect 
was significantly reduced by BMDMSC transfer (n = 6). * and ** indicate p < 0.05 and p < 0.01, respectively.
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and angiopoietin-4 after LPS exposure may modulate the
influx of neutrophils, protein leakage, and alveolar flood-
ing in ALI mice [39]. In addition to VEGF, the levels of
TNF-α and IL-6 were also elevated in the BLM-treated
rats. TNF-α and IL-6 have multiple effects on acute
inflammation and infiltration by neutrophils and lym-
phocytes [1,2]. TNF-α also contributes to the pathophysi-
ology of interstitial lung disease by inducing the apoptosis
of epithelial cells and the sequential release of TGF-β, IL-
1β, and IL-1 receptor antagonist (IL-1ra) [40]. In addi-

tion, the production of reactive oxygen and nitrogen spe-
cies is related to apoptosis in alveolar epithelial cells [41],
the release of TGF-β from pulmonary epithelial cells [42],
and the activation of TGF-β1 through the disruption of
its interaction with latency-associated peptide [43]. In
patients with idiopathic pulmonary fibrosis (IPF), the
expression of iNOS is elevated in the lungs [44]. In our
previous study of a BLM lung injury animal model, iNOS
was differentially expressed [31]. These findings
prompted us to assess whether changes in IL-1β, VEGF,

Localization of the Y chromosome in bleomycin (BLM)-treated rats following bone marrow-derived mesenchymal stem cell 
transfer
Figure 10 Localization of the Y chromosome in bleomycin (BLM)-treated rats following bone marrow-derived mesenchymal stem cell 
transfer. A 2-μm-thick section of lung tissue from a BLM-treated rat hybridized with a fluorescein isothiocyanate-conjugated Y chromosome paint 
probe and counterstained with ethidium bromide is shown. (A) Bleomycin treated rats (n = 3). (B) Bone marrow-derived mesenchymal stem cell in 
recipient lungs under fluorescent microscope two weeks after BMDMSC injection in BMDMSC transfer rats (n = 3). The arrows indicate nuclei contain-
ing a Y chromosome. Magnification = 1000×. (C) Donor cells containing the Y chromosome zoomed out pictures of the lung. Magnification = 400×. 
(D) Localization of the cells containing the Y chromosome in serial section of lung tissue of BMDMSC transfer rats. H&E stain, magnification = 400×.
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NO metabolite, and pro-inflammatory cytokine includ-
ing IL-6 and TNF-α production occur in BLM-treated
rats following BMDMSC transfer to evaluate the mecha-
nism of the protective effect of BDMSC transfer against
ALI/fibrosis. IL-1β and VEGF was elevated in the lung
lysates following BLM treatment in the present study.
Note that the levels of IL-1β, VEGF, and nitric oxidative
stress peaked at day 7 and then decreased steadily. This
result is in agreement with the observed peak change in
the wet/dry ratio of the lung. Thus, IL-1β, VEGF, and
nitric oxidative stress may be associated with early
changes in vascular permeability in ALI. As seen by the
change in the wet/dry ratio in the BLM-treated rats,
BMDMSC transfer almost fully suppressed the BLM-
induced increase in these mediators throughout the
experimental period (Figure 8 and 9). These data indicate
that BMDMSC transfer may be effective against increases
in vascular permeability via the regulation of IL-1β,
VEGF, and NO stress. In addition to the mediators mea-
sured in our study, BMDMSCs may exert their therapeu-
tic effects against various types of lung injury through
other cytokines and mediators. Rojas et al. [23] demon-
strated the protective effect of BMDMSC transfer against
the increase in circulating levels of G-CSF and GM-CSF
with a decrease in inflammatory cytokines, including IL-
2, INF-γ, and IL-4, following BLM-induced lung injury in
mice. G-CSF and GM-CSF are well known for their ability
to promote the mobilization of endogenous stem cells.
The administration of MSCs directly into the airspace
down-regulated the pro-inflammatory response to endo-
toxin by reducing the levels of TNF-α and MIP-2 in both
the BAL fluid and plasma while increasing the level of the
anti-inflammatory cytokine IL-10 [45]. In addition, the
beneficial effect of MSCs is independent of the ability of
the cells to engraft in the lung as observed in our study,
and is unrelated to the clearance of endotoxin by MSCs
[45].

BLM induces lung epithelial cell death, followed by
acute neutrophilic influx, chronic inflammation, and
parenchymal fibrosis within 4 weeks in susceptible strains
of mice [46]. Thus, we recorded our observations up to
day 28 to evaluate the later stages of ALI/fibrosis. In con-
trast to the complete effect of the BMDMSCs on neutro-
philic inflammation, lymphocyte and macrophage
infiltration progressively increased over time in our
experiments, even in the BMDMSC recipients. At the
same time, the effect of BMDMSC against the BLM-
induced increase in IL-6 and TNF-α was incomplete.
Lymphocytosis in the lung lesions of patients with idio-
pathic interstitial pneumonia is associated with an
increased amount of IL-6 in the lung [47]. This indicates
that the transfer of BMDMSCs may exert a partial effect
on chronic inflammation at a late stage. We don't know
the meanings of the partial response at the moment.

Before infusing the BMDMSCs, we checked their purity
using CD44H and CD45. Only those cells that were over
95% positive for CD44H were used in our experiments.
Thus, contamination with other cell types was avoided.
BMDMSCs are pluripotent CD45-, CD44H+ adherent
cells that are capable of differentiating into a variety of
cell types, including endothelial, epithelial, and neuronal
cells, as well as adipocytes, depending on the culture con-
ditions [33,48]. In the lung, BMDMSCs can differentiate
into type I and type II alveolar epithelial cells, endothelial
cells, fibroblasts, and bronchial epithelial cells [4-6]. Our
cytogenetic data revealed the presence of donor cells in
the alveolar walls in the later phase of BLM-induced ALI,
but very sparsely (Figure 10). Thus, our data suggest that
MSCs may alter the microenvironment of the lung at the
engraftment sites as demonstrated by the other study
[45]. However, when considered that the donor-derived
cells were apparently sparsely were detected from day 7 to
21 and the overall engraftment level were very low
through the entire experimental period, the anti inflam-
matory and anti fibrotic effects of the MSCs might be a
result of the systemic anti-inflammatory effects of MSCs.

Conclusions
The systemic administration of BMDMSCs at the early
stage effectively abolished the neutrophilic lung inflam-
mation and collagen deposition that is typically observed
following BLM treatment in animal models. Transfer of
BMDMSCs down-regulates the BLM-induced increase in
levels of IL-1β, TGF-β VEGF, IL-6, TNF-α, and NOS in
the lung through the late stage of lung injury. These data
suggest that BMDMSC transfer may be an effective strat-
egy for the treatment of lung injury and fibrosis via mod-
ulation of microenvironment of injured lung.
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