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Abstract

Background: Receptors for advanced glycation end-products (RAGE) are multiligand cell-surface receptors expressed
abundantly by distal pulmonary epithelium. Our lab has discovered RAGE-mediated effects in the orchestration of lung
inflammation induced by tobacco smoke and environmental pollutants; however, the specific contribution of RAGE to
the progression of proximal airway inflammation is still inadequately characterized.

Methods and results: We generated a Tet-inducible transgenic mouse that conditionally overexpressed RAGE using
the club cell (Clara) secretory protein (CCSP) promoter expressed by club (Clara) cells localized to the proximal airway.
RAGE was induced for 40 days from weaning (20 days of age) until sacrifice date at 60 days. Immunohistochemistry,
immunoblotting, and qPCR revealed significant RAGE up-regulation when compared to non-transgenic controls; however,
H&E staining revealed no detectible morphological abnormalities and apoptosis was not enhanced during the 40 days
of augmentation. Freshly procured bronchoalveolar lavage fluid (BALF) from CCSP-RAGE TG mice had significantly more
total leukocytes and PMNs compared to age-matched control littermates. Furthermore, CCSP-RAGE TG mice expressed
significantly more tumor necrosis factor alpha (TNF-α), interleukin 7 (IL-7), and interleukin 14 (IL-14) in whole lung
homogenates compared to controls.

Conclusions: These data support the concept that RAGE up-regulation specifically in lung airways may function in the
progression of proximal airway inflammation.
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Introduction
Receptors for advanced glycation end-products (RAGE)
propagate intracellular signaling programs following
interaction with a diversity of ligands. As members of
the immunoglobulin superfamily of surface pattern recog-
nition receptors, RAGE is often considered a potent initi-
ation factor that functions in a focal fashion. Despite acute
influences, RAGE has also increasingly been implicated as
a progression factor in response to the availability of ad-
vanced glycation end-products (AGEs) that accumulate
during oxidant stress and when endogenous ligands in-
cluding S100/calgranulins, amyloid-β-peptide, and high
mobility box protein 1 (HMGB1) are augmented [1-3].
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RAGE is physiologically expressed in membranes of al-
veolar type I epithelial cells [4] and macrophages where
its signaling programs serve as an early response to
perturbation. Furthermore, viscous feedback loops are com-
mon when pulmonary and non-pulmonary inflammatory
lesions up-regulate RAGE signaling intermediates following
stimulation [1,3,5,6].
A series of publications clearly outline discoveries that

demonstrate elevated RAGE expression and signaling by
pulmonary cell types when extrinsic particulates including
tobacco smoke are present [7-10]. In particular, RAGE
expression mediates cytokine elaboration via Ras, a GTPase
that influences MAP kinase signaling intermediates that
modulate the expression of pro-inflammatory NF-κB target
genes [11,12]. Because RAGE and its ligands are biosyn-
thetically up-regulated by tobacco smoke exposure, active
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RAGE signaling may cooperate in combined cellular
responses associated with smoke-induced pulmonary
inflammation. Furthermore, RAGE is significantly in-
creased in distal lung tissue of smokers [13-15] and in
the proximal airways of asthmatics that experience
proximal lung inflammation [16]. It is therefore clear
that a lucid understanding of the molecular aspects of
RAGE signaling in the lung is critical, particularly in the
sensitive upper airways of susceptible individuals.
Proximal airway inflammation and impaired airflow

are inflammatory characteristics that affect 23 million
Americans. Airway inflammation involves a complex
interaction of cells, cytokines, chemokines and other
mediators. Immune and nonimmunologic environmen-
tal factors including primary and secondhand smoke
(SHS) are important triggers of proximal airway in-
flammation [17]. Approximately 25% to 35% of individ-
uals with airway inflammation are current smokers [18]. It
is evident that smoking or exposure to SHS increase air-
way sensitivity and elevate proximal airway morbidity and
disease severity [17]. Prolonged exposure to tobacco
smoke in patients with airway disease contributes to a
decline in lung function: approximately 18% in forced
expiratory volume in 1 second (FEV1) over 10 years [19].
Interestingly, asthmatic patients who smoke share features
similar to those found in the early stages of emphysema
[20]; therefore RAGE signaling observed in emphysema
may also, at least in part, impact airway pathogenesis [9].
SHS from smoking parents is associated with increased
airway hypersensitivity and other respiratory symptoms
among school children. SHS from parents’ smoking habits
also is associated with more severe disease among those
children with already established asthma [21,22]. Even
exposure to “light cigarette smoking” (≤10 cigarettes per
day) can cause children who have airway inflammation to
experience an increase of wheezing illness, especially
during the first year of life, and to decreased lung function
in children up to 6 years of age [23]. Because there is
a clear role for RAGE in primary and SHS exposure,
research into airway exacerbations by tobacco smoke
should include an evaluation of RAGE biology in the
proximal lung. As such, it is critical to examine how
RAGE target genes influence disease presentation so
that precise mechanisms that coordinate and maintain
airway inflammation can be identified.
In the current study we test the hypothesis that increased

RAGE expression specifically by proximal airway epithelium
results in elevated inflammation. Through the utilization
of a double transgenic mouse model that conditionally
overexpresses RAGE in conducting airway epithelium, we
demonstrate that RAGE augmentation in the absence
of any additional particulate exposure leads to airway
inflammation coincident with leukocyte extravasation
and cytokine secretion. These data offer evidence that
short-term conditional RAGE overexpression is sufficient
to induce an inflammatory response; however, additional
research is needed to investigate the broader applications
of this model. For example, additional studies that explore
a lengthened time course may demonstrate that persistent
RAGE elevation in the proximal lung coordinates more
robust pulmonary remodeling events. These and other
studies may reveal that RAGE and its intermediates are
potential targets in the treatment or prevention of chronic
inflammatory airway diseases, particularly those exacer-
bated by tobacco smoke such as asthma, bronchiectasis,
and chronic bronchitis.

Materials and methods
Mice
Two transgenic lines of mice were generated and mated
to create conditional doxycycline (dox)-inducible mice
that overexpress RAGE (CCSP-RAGE TG) [24]. One
mouse line specifically included a tetracycline-inducible
RAGE construct and another utilized the club cell (Clara)
secretory protein (CCSP) promoter successfully used to
specifically target proximal airway epithelium [25]. At
post-natal (PN) day 20, mice were weaned, genotyped
as similarly outlined [26], and continuously fed dox
(625 mg/kg; Harlan Teklad, Madison, WI) until their
sacrifice date at PN 60. Single or non-transgenic mice
used as controls were also fed dox. On the day animals
were sacrificed, en bloc lungs were inflation-fixed with
4% paraformaldehyde for histology [27], lavaged for the
assessment of bronchoalveolar lavage fluid (BALF) [28],
or resected prior to the isolation of total protein/RNA
[29]. Mice were housed and utilized in accordance with
protocols approved by the IACUC at Brigham Young
University.

RAGE quantification and histology
In order to assess whether RAGE was effectively increased
in the airways of CCSP-RAGE TG mice, quantitative
real time RT-PCR (qPCR) and immunoblotting were
performed for RAGE using primers, antibodies, and
experimental conditions already described in detail
[27]. Lungs from control and CCSP-RAGE TG mice were
inflation fixed, processed, and sectioned as previously
outlined [30]. Slides were stained with hemotoxylin and
eosin (H&E, Thermo Scientific, Pittsburg, PA) using
standard techniques. Immunohistochemical localization of
RAGE was performed as summarized [7]. CCSP immuno-
histochemistry was performed using a rabbit polyclonal
IgG at a concentration of 1:500 (Seven Hills BioReagents,
Cincinnati, OH) and staining for FoxJ1 was performed
with a mouse monoclonal IgG at 1:500 (Seven Hills
BioReagents). A TUNELTdT-FragEL DNA Fragmentation
Detection Kit (Calbiochem, Rockland, MA) was used
to evaluate apoptosis wherein TUNEL positive cells were
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counted by blinded individuals in high power fields prior to
normalization to counts observed in control animals [31].

BALF Analysis
CCSP-RAGE TG and control mice were sacrificed and
BALF was removed as described [27]. Supernatants were
assayed for total protein with a bicinchoninic acid (BCA)
total protein kit (Thermo Scientific). Total numbers of
pelleted cells were counted with a hemocytometer
and cells stained with a modified Wright-Giemsa stain
(Diff-Quik; Baxter, McGaw Park, IL) were subjected
to a blinded manual differential cell count in which 200
cells were counted per slide, and the percent of total cells
was determined. Counting was performed in triplicate and
the average was obtained.

Quantification of pro-inflammatory cytokines
Total RNA from CCSP-RAGE TG and control lungs
(n =3 per group) was isolated using the Absolutely RNA
Kit (Stratagene, Santa Clara, CA) and treated with DNAse.
RNA was quantified and 1 μg of each sample was
converted to cDNA. Cytokines were assessed using
the Mouse Inflammatory cDNA Plate Array (Signosis,
Sunnyvale, CA) and the cytokine concentrations were
internally normalized to 18 s RNA as outlined in the
instructions. Immunoblotting for TNF-α, IL-7, and IL-14
was also performed in order to confirm differential
expression in CCSP-RAGE TG mouse lungs compared
to controls. Blotting was performed using antibodies for
TNF-α (sc-52746, Santa Cruz Biotechnology, Santa
Cruz, CA), IL-7 (sc-7921, Santa Cruz Biotechnology),
and IL-14 (sc-80994 Santa Cruz Biotechnology) with
20 μg protein precisely quantified using BCA quantifica-
tion and using standard methods already outlined [32].
Membranes were incubated with appropriate second-
ary antibodies, detected with ECL-plus (Amersham,
Piscataway, NJ) and developed. Band densitometry utilized
digitized images and the Un-Scan-It software package
(Silk Scientific, Orem, UT).

Statistical analysis
Values are expressed as mean ± SD obtained from at least
three separate experiments in each group. Data were
assessed by one- or two-way analysis of variance (ANOVA).
When ANOVA indicated significant differences, the Student
t-test was used with Bonferroni correction for multiple
comparisons. Results presented are representative, and
those with p-values <0.05 were considered significant.

Results
CCSP-RAGE TG mice up-regulate RAGE expression in the
proximal airways
Double transgenic offspring (CCSP-RAGE TG) from
CCSP-rtTA and TetO-RAGE transgenic mice were obtained
and dox-mediated up-regulation of RAGE commenced on
PN20, a period that coincided with the completion of
lung morphogenesis. In order to assess the effectiveness of
conditional RAGE up-regulation, qPCR and immunoblot-
ting experiments were conduced using total mRNA and
whole lung lysates, respectively. qPCR revealed that
CCSP-RAGE TG mice fed dox from PN20 through
PN60 expressed significantly more RAGE mRNA than age
matched single or non-transgenic controls (Figure 1A).
Lungs exposed to dox for 40 days were also evaluated by
immunoblotting and the results demonstrated that RAGE
protein was up-regulated when compared to control
mouse lungs (Figure 1B). Immunostaining for RAGE was
necessary in order to localize RAGE overexpression.
Immunohistochemical staining for RAGE revealed persist-
ent basal expression in the distal lung compartment
(Figure 1C and D, arrowheads). However, punctate RAGE
up-regulation by airway epithelial cells (Figure 1D, arrows)
was observed in CCSP-RAGE TG mice while RAGE
expression was undetectable in airway epithelial cells
of control lungs (Figure 1C, arrow).

Up-regulation of RAGE in the proximal airways did not
alter lung morphology
Body weights of CCSP-RAGE TG animals did not
significantly differ following dox administration when
compared to dox-exposed control animals (not shown).
Lung weights were also indistinguishable between the two
groups of mice (not shown). Classic H&E staining of lung
samples was completed and there were no appreciable
histological differences between lungs from control animals
(Figure 2A) and samples procured from CCSP-RAGE
TG mice (Figure 2B) after 40 days of up-regulation.
In particular, mean cord lengths and average airway wall
thickness were measured [26] and these histological evalu-
ations revealed insignificant differences in proximal airway
number and appearance. Furthermore, parenchymal
regions of the peripheral lung, including the alveolar
compartment, were also normal in terms of size and
appearance. In order to qualitatively evaluate the prox-
imal airways, club (Clara) cells were characterized by
immunostaining for CCSP. CCSP expression was not
different when comparisons were made between con-
trol lung sections (Figure 2C) and CCSP-RAGE TG sec-
tions (Figure 2D). Ciliated pulmonary epithelium, the
other predominant cell population in the conducting
airways, was also immunohistochemically evaluated by
staining for FoxJ1, a nuclear transcription factor that
identifies ciliated pulmonary epithelial cells [33]. Similar
to immunohistochemistry for CCSP, FoxJ1 abundance was
not different when considering CCSP-RAGE TG lung
sections and controls (not shown). Specialized stains
for total collagen (Picro-sirius red) and proteoglycans
(Periodic acid-Schiff) to identify mucus abundance revealed



Figure 1 RAGE TG mice fed doxycycline (dox) up-regulated RAGE in CCSP-expressing cells of the proximal airways. Dox administration
commenced on post natal (PN) 20 and continued until sacrifice date on PN 60. Quantitative RT-PCR (A) and immunoblotting (B) for RAGE revealed
significant increases in RAGE expression following dox treatment of RAGE TG animals compared to dox-fed controls. RAGE detection using qPCR and
blotting was conducted using samples with equal mRNA or protein concentrations from each animal as described. Data are representative of at least
4 animals per group and *p ≤0.05. RAGE immunohistochemistry revealed normal distal lung expression in both groups (C and D, arrowheads). No
RAGE expression was detected in the airways of control mice (C, arrow); however, punctate RAGE expression was common in the airways of RAGE TG
mice (D, arrows). Representative images (400× original magnification) of n =3 mice in each group are shown.
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no differences between the groups (not shown). Even
though cell-specific analyses did not suggest abnormal
quantities, TUNEL staining was conduced to test whether
turnover was affected. Representative staining identified
sporadic apoptotic cells in lung parenchyma (not shown);
however, counts revealed that despite a trend toward
increased apoptosis in CCSP-RAGE TG mouse lungs,
there was not a significant increase in cell death when
comparing the two groups (Figure 3).

Up-regulation of RAGE in the proximal airways induced
lung inflammation
There was not a net increase in total protein abundance in
BALF samples following 40 days of RAGE up-regulation in
the proximal lung (Figure 4A). In order to assess the
potential for leukocyte extravasation, total cell quantities in
BALF samples were obtained prior to their morphological
identification. The total number of cells in BALF from
RAGE TG mice was significantly elevated when compared
to controls (Figure 4B). When cells were anatomically
identified, the percentage of polymorphonucleocytes
(PMNs) was significantly elevated (Figure 4C), sug-
gesting diapedesis of these cells is mediated, at least
in part, by RAGE signaling. Eosinophils also trended
higher in RAGE TG mice compared to controls; how-
ever, the average increase was just beyond significance
(p =0.06). Altered leukocyte quantities provided the
rationale for the subsequent evaluation of inflamma-
tory cytokines implicated as participants in leukocyte
chemoattraction. Characterization of mRNA isolated
from mouse lung samples revealed that RAGE TG
mice had significantly increased levels of TNF-α, IL-7,
and IL-14 compared to control animals (Figure 5).
We also discovered marginally increased expression of
important Th2 related cytokines including IL-4, IL-6,
and IL-13; however, such elevations in expression were
not significant. In order to correlate mRNA expression
with protein levels, immunoblotting for TNF-α, IL-7,
and IL-14 was also completed. Compared to lung
lysates from control animals, TNF-α, IL-7, and IL-14



Figure 3 Actively apoptosing cells uncovered by TUNEL
staining demonstrated that RAGE TG mice are not significantly
different from age matched control mice. Cell counts of stained
sections performed by blinded individuals demonstrated that
apoptotic cells were sporadic, but no different in terms of
abundance between the two groups. A minimum of three animals
was evaluated in each experimental group.

Figure 2 RAGE TG mouse lungs had no significant histological alterations compared to control mouse lungs. Control lung (A) and RAGE
TG sections (B) stained with H&E revealed no morphological disturbances. Immunostaining for CCSP, a marker of club (Clara) cells in the lung
airway, revealed no qualitative differences when comparing normal control lung sections (C) with sections obtained from RAGE TG mice
(D). Representative images (400× original magnification) of n = 3 mice in each group are shown.
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were each up-regulated in lungs from CCSP-RAGE
TG mice (Figure 6).

Discussion
The present investigation explores the basis of RAGE
function in the proximal airways and demonstrates
the manifestation of inflammatory characteristics with
persistent RAGE availability. The plausibility that RAGE
participates in airway inflammation is only a recent
development; however, research from multiple independent
laboratories has demonstrated that RAGE expression
increases in the airways of sensitized, inflamed lungs.
For example, research by Ullah et al. reveled that
RAGE and HMGB1 were both augmented in the allergic
airway and that the activation of a RAGE-HMGB1
signaling axis in response to various allergens mediated
allergic airway sensitization [16]. Additional research
that employed blocking antibodies against HMGB1 led to
the discovery that airway inflammation was ameliorated in
ovalbumin (OVA)-immunized mice with hypersensitive
airways [34]. Specifically, HMGB1 abrogation led to
significantly less inflammatory cell abundance, mucus
secretion, and collagen deposition characteristic of asth-
matic lung remodeling [34]. Milutoinovic et al. also recently
demonstrated that the inflammatory profiles in RAGE
null mice were lessened following house dust mite



Figure 4 Bronchoalveolar lavage fluid (BALF) analysis revealed increased cellularity and percent PMNs in RAGE TG compared to
control mice. RAGE TG mice did not have significant differences in total BALF protein when compared to controls (A). However, the total
number of leukocytes detected in BALF was statistically increased in samples from RAGE TG mice compared to controls (B). A closer inspection of
total cells in BALF revealed that the percentage of PMNs was significantly elevated in RAGE TG mice (C). N = 6 animals per group, *p ≤ 0.05.
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and OVA-induced asthma pathogenesis [35]. These
experimental outcomes support the theme that RAGE
signaling inhibition may provide a promising therapeutic
strategy in the alleviation of proximal airway inflammatory
diseases.
Increased leukocyte abundance in the airways of

RAGE TG mice was observed despite no abnormal lung
remodeling compared to controls. These observations
were consistent with human studies that involved the
characterization of induced sputum from normal healthy
individuals compared to patients with airway inflamma-
tion [36]. In particular, patients identified by higher
Asthma Control Questionnaire (ACQ) results expressed
Figure 5 Messenger RNA levels of the pro-inflammatory mediators
TNF-α, IL-7, and IL-14 were each up-regulated in RAGE TG mouse
lung lysates compared to controls. Measurements for cytokines were
standardized to 18 s RNA. A minimum of three animals were evaluated
in each experimental group and *p ≤0.05.
significantly higher neutrophil numbers that were as-
sociated with elevated HMGB1 and RAGE expression
[36]. Interestingly, a newly developed viral-induced mouse
model of airway inflammation revealed a similar neutro-
philic inflammatory profile in BALF assessments coinci-
dent with no abnormal lung histology [37]. While our
research identifies that a short-term period of RAGE up-
regulation was sufficient to induce airway inflammation,
chronic studies using this model should be designed to
test whether lung remodeling observed in prolonged in-
flammatory conditions is induced. For instance, a more
chronic assessment may lead to significant increases in eo-
sinophil counts that, with higher PMN numbers, cause
histopathological remodeling of the airway. Moreover,
phenotypic characterization of other leukocytes includ-
ing lymphocytes and macrophages would prove insightful
when considering causes of RAGE-mediated airway
inflammation.
While we did not detect a significant increase in Th2

cytokines after 40 days, we observed elevated expression
of TNF-α, IL-7, and IL-14 in RAGE TG mouse lungs
compared to controls. TNF-α is the prototypic ligand of
the TNF superfamily [38]. It is a pleiotropic molecule
that centrally functions in inflammation, immune system
development, apoptosis, and lipid metabolism [39]. In
addition to inflammatory lung functions, TNF-α is also
involved in a number of severe pathological conditions
including Crohn’s disease, rheumatoid arthritis, neuropathic
pain, obesity, type 2 diabetes, septic shock, autoimmunity,
and cancer [40]. IL-7 was originally discovered as a growth
factor produced by stromal cells that aided in the prolifera-
tion of precursor B-lymphocytes [41]. In addition to being
produced by bone marrow stromal cells, IL-7 mRNA has
also been detected in spleen, thymus, kidney, and epithelial



Figure 6 Immunoblotting revealed that RAGE TG mice had significantly more TNF-α, IL-7, and IL-14 in total lung lysates when
compared to controls. Total protein concentrations were equal in all lanes and band densities were quantified by densitometry as outlined in
the Methods section. Results are representative of n =3 mice per group, *p ≤0.05.
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cells [42]. Functionally, IL-7 has been shown to have
pleiotropic effects on a variety of cell types, including
cells of the B-, T-, NK-, and myeloid lineages [40].
Although less studied, IL-14 primarily enhances im-
mune cell proliferation and it is thought to partner
with TNF-α during inflammatory signaling [43]. It re-
mains possible that Th2 related cytokines associated
with eosinophilic inflammation are increased with
more prolonged RAGE over-expression in the prox-
imal lung. Accordingly, the activation of other T cell
responses such as those associated with Th1, T reg,
and Th17 should be considered. These responses may
contribute to the refining of common Th2 responses
plausibly controlling Th2-mediated eosinophil abun-
dance trending higher after just 40 days of RAGE
up-regulation. A more thorough inspection of these
responses, together with Th17 modulators such as IL-
17A, IL-17 F, IL17AF, IL-21, and IL-22 should be
undertaken in future analyses of long term RAGE over-
expressing mice.
Our discoveries related to increased TNF-α, IL-7 and

IL-14 expression in RAGE TG mice supports previous
research in the areas of airway inflammation disease
diagnosis and progression. Thomas et al. demonstrated
that TNF-α exacerbates airway sensitivity by control-
ling neutrophilia and it cooperates with IL-14 in in-
creasing airway responsiveness [43]. Complimentary
studies revealed that IL-7 was increased by airway
epithelial cells following exposure to environmental
particulates with diameters that are less 2.5 μm known
to promote asthma [44]. Furthermore, IL-7 centrally
functioned in the recruitment of eosinophils in chronic
airway inflammatory events [45]. A link clearly exists
between the current RAGE TG mice and previously
published studies that thematically describe inflamma-
tory programs involving TNF-α, IL-7 and IL-14 [43,46].
In conclusion, the present study revealed that condi-
tional genetic up-regulation of RAGE in the proximal
airways leads to the induction of an inflammatory re-
sponse. RAGE up-regulation for 40 days caused expanded
extravasation of leukocytes and elevated expression of cy-
tokines implicated in inflammatory pathogenesis. The data
revealed that a short period of RAGE expression was suffi-
cient to initiate inflammation; however, further research
defining cellular mechanisms that function during chronic
RAGE up-regulation may aid in clarifying a more accurate
model of airway inflammatory disease. Further elucidation
of the sufficiency of RAGE signaling in the airways may
lead to strategies for attenuating proximal airway inflam-
matory diseases.
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