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Morphologically intact airways in lung 
fibrosis have an abnormal proteome
Jeremy A. Herrera1,4,6*  , Lewis A. Dingle3,4, M. Angeles Monetero5, Rajamiyer V. Venkateswaran4,5, 
John F. Blaikley4,5, Felice Granato5, Stella Pearson1,2,4, Craig Lawless1,4 and David J. Thornton1,2,4 

Abstract 

Honeycombing is a histological pattern consistent with Usual Interstitial Pneumonia (UIP). Honeycombing refers to 
cystic airways located at sites of dense fibrosis with marked mucus accumulation. Utilizing laser capture microdissec-
tion coupled mass spectrometry (LCM-MS), we interrogated the fibrotic honeycomb airway cells and fibrotic unin-
volved airway cells (distant from honeycomb airways and morphologically intact) in specimens from 10 patients with 
UIP. Non-fibrotic airway cell specimens from 6 patients served as controls. Furthermore, we performed LCM-MS on 
the mucus plugs found in 6 patients with UIP and 6 patients with mucinous adenocarcinoma. The mass spectrometry 
data were subject to both qualitative and quantitative analysis and validated by immunohistochemistry. Surprisingly, 
fibrotic uninvolved airway cells share a similar protein profile to honeycomb airway cells, showing deregulation of 
the slit and roundabout receptor (Slit and Robo) pathway as the strongest category. We find that (BPI) fold-containing 
family B member 1 (BPIFB1) is the most significantly increased secretome-associated protein in UIP, whereas Mucin-
5AC (MUC5AC) is the most significantly increased in mucinous adenocarcinoma. We conclude that fibrotic uninvolved 
airway cells share pathological features with fibrotic honeycomb airway cells. In addition, fibrotic honeycomb airway 
cells are enriched in mucin biogenesis proteins with a marked derangement in proteins essential for ciliogenesis. This 
unbiased spatial proteomic approach generates novel and testable hypotheses to decipher fibrosis progression.

Introduction
Usual Interstitial Pneumonia (UIP) is a fibrotic disease 
that is associated with a variety of fibrotic entities (idi-
opathic pulmonary fibrosis—IPF, connective tissue dis-
ease—CTD, and hypersensitivity pneumonitis—HP) 
[1–3]. The UIP histological pattern is patchy with regions 
of relatively normal-appearing lung adjacent to dense 
fibrosis and honeycombing. Honeycomb refers to the 
clustering of airspaces within dense fibrotic tissue and 
is associated with the thickening of airway walls. Accu-
mulation and plugging of mucus and other airway debris 
within the honeycomb airways impacts lung function.

Our current understanding of fibrotic airway patho-
genesis has been improved with the advancement of 
structural, genetic, and molecular analyses. Structurally, 
UIP/IPF lung experiences reduced numbers of terminal 
bronchioles in regions of both minimal and established 
fibrosis [4–6]. Genetically, sequence changes affecting 
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alveolar cells (MUC5B, SFTPC, and SFTPA2) have been 
reported [7–9]. Cells comprising the honeycomb air-
ways present as either multi-layer or as a single layer [1], 
with cellular subtypes including; basal, ciliated, colum-
nar, pseudostratified and secretory epithelium; while 
there are variable reports on the presence of alveolar 
type II (ATII) cells [10–12]. Functionally, single-cell RNA 
sequencing of IPF epithelial cells identify marked cellular 
heterogeneity as compared to control [13]. Collectively, 
these factors are believed to lead to airway homeostasis 
impairment and facilitate disease progression.

An important function of the airway is to produce 
mucus. Not only does mucus serve as a physical bar-
rier but mucus also has antimicrobial properties to pro-
tect distal airways [14]. During the fibrotic process, 
mucus fills and plugs the honeycomb airways, which 
affects pathogen clearance and blood-oxygen exchange. 
The secreted mucus hydrogel is underpinned by two 
gel-forming mucins, of which, mucin 5B (MUC5B) is 
the most abundant in health, whereas MUC5AC is also 
detected but at a lower level [10]. A gain-of-function 
MUC5B polymorphism is amongst one of the high-
est risk factors associated with lung fibrosis [10, 15–18]. 
However, knowledge regarding the molecular composi-
tion of the mucus plug in UIP is incomplete.

We have recently created a tissue atlas of the fibrotic 
front of UIP/IPF utilizing laser capture microdissection 
coupled mass spectrometry (LCM-MS) to interrogate 
the fibrotic alveoli, fibroblastic foci and mature scar tis-
sue [19, 20]. Here, we used the same approach to define 
the composition and provide mechanistic themes of the 
honeycomb airway cells with the aim to identify key tar-
gets and pathways to intercept fibrosis progression. In 
addition, we identify the composition of mucus in hon-
eycomb airways in lung fibrosis (UIP) and compare this 
to lung cancer (mucinous adenocarcinoma) to determine 
if mucus heterogeneity exists in another progressive dis-
ease state where mucus plugs are found in the airways.

Materials and methods
Patient samples
Usual Interstitial Pneumonia (UIP) specimens were 
defined by current guidelines [1, 21]. Non-fibrotic con-
trols were collected from morphologically normal lung 
tissue distal to tumor during resection (fibrotic and con-
trol patient demographics may be found in Additional 
file  1: Fig. S1). Mucinous adenocarcinoma was defined 
by current guidelines (mucinous adenocarcinoma 
patient demographics may be found in Additional file 1: 
Fig. S2) [22]. In this study, we utilized 10 UIP patients, 
6 non-fibrotic patients, and 6 mucinous adenocarcinoma 
patients.

Histological staining
Five-micron sections of formalin-fixed and paraffin-
embedded (FFPE) specimens were H&E-stained by 
using an automated stainer (Leica XL) at the Univer-
sity of Manchester Histology Core Facility as previously 
described [19]. Importantly, slides were stored at 4  °C 
for up to one week while laser capture microdissection 
(LCM) was being performed. Captured material was 
stored at −  80  °C until all samples were ready for mass 
spectrometry processing. Alcian Blue/Periodic Acid 
Schiff (AB/PAS) was performed as follows. De-paraffi-
nized slide sections were incubated for 5 min in 1% alcian 
blue 8GX (Sigma; A5268), 3% acetic acid. Slides were 
then washed in tap water followed by a 5-min incubation 
in 1% periodic acid (Sigma; 375810). Finally, slides were 
washed in tap water and incubated in Schiff’s reagent 
(Sigma—3952016) for 15 min. After extensive washing in 
tap water, slides were coverslipped without counterstain. 
For pentachrome, we followed a protocol as previously 
described [19].

For immunohistochemistry (IHC), we utilized the 
Novolink Polymer Detection Systems (Leica, RE7200-
CE) as previously described [23]. We used the follow-
ing antibodies anti-BPIFB1 (Abcam; ab219098, titre 
1:60,000), anti-elastin (Proteintech; 15257-1-AP; titre 
1:16,000), anti-PIGR (Abcam; ab224086, titre1:8000), and 
anti-serotransferrin (Abcam; ab268117, titre 1: 30,000). 
Anti-MUC5B (titre 1:10,000) and anti-MUC5AC (titre 
1:12,000) was previously purified and used here [24]. 
For all samples, we used antigen heat retrieval using cit-
rate buffer pH 6.0 (Sigma, C9999), with the exception of 
EDTA pH 9.0 antigen heat retrieval for serotransferrin 
and elastin. Slides were hematoxylin counterstained and 
coverslipped using permount (ThermoScientific, SP15).

For MUC5B, immunostains followed a modified proto-
col. After citrate buffer pH 6.0 antigen heat retrieval, the 
sections underwent reduction and alkylation. Sections 
were reduced by incubation at 37 °C for 30 min in 10 mM 
DTT, 0.1  M Tris/HCl pH 8.0. Sections were washed in 
water and then incubated in 25 mM Iodoacetamide, and 
0.1 M Tris/HCl pH 8.0 for 30 min at room temperature 
(kept in the dark). Lastly, sections were washed in water 
followed by blocking and primary antibody incubation.

For immunofluorescence, dewaxed slides were sub-
jected to citrate buffer pH 6.0 antigen heat retrieval 
and probed overnight with anti-MUC5AC (titre 1:100), 
anti-MUC5B (post reduction/alkylation; titre 1:100), or 
BPIFB1 (Abcam; ab219098, titre 1:100). Sections were 
then incubated with secondary anti-mouse fluorophore 
680 (Invitrogen, A21058, 1:500) or anti-rabbit fluoro-
phore 680 (Invitrogen; A21109; 1:500) for 1  h. Sections 
were coverslipped using ProLong antifade with DAPI 
(Invitrogen; P36931).
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Laser capture microdissection
The MMI CellCut Laser Microdissection System (Molec-
ular Machines & Industries) was used to capture regions 
of interest on MMI membrane slides (MMI, 50102) as 
previously described [19, 20]. For this set of experiments, 
we collected a volume 0.03  mm3 of tissue per sample.

Histological imaging
For fluorescence microscopy, all stains were performed at 
the same time. In addition, images were taken at the same 
intensity utilizing EVOS FL imaging system (ThermoSci-
entific). For light microscopy, we used a DMC2900 Leica 
instrument with Leica Application Suite X software.

Mass spectrometry sample preparation
Samples were prepared as described [19, 20]. In short, 
samples underwent a series of steps to maximize protein 
yield, including high detergent treatment, heating, and 
physical disruption.

Liquid chromatography coupled tandem mass 
spectrometry
The separation was performed on a Thermo RSLC sys-
tem (ThermoFisher) consisting of a NCP3200RS nano 
pump, WPS3000TPS autosampler and TCC3000RS col-
umn oven configured with buffer A as 0.1% formic acid 
in water and buffer B as 0.1% formic acid in acetonitrile. 
An injection volume of 4 µl was loaded into the end of a 
5  µl loop and reversed flushed on to the analytical col-
umn (Waters nanoEase M/Z Peptide CSH C18 Column, 
130 Å, 1.7 µm, 75 µm X 250 mm) kept at 35 °C at a flow 
rate of 300 ηl/min with an initial pulse of 500 ηl/min for 
0.1 min to rapidly re-pressurize the column. The separa-
tion consisted of a multistage gradient of 1% B to 6% B 
over 2 min, 6% B to 18% B over 44 min, 18% B to 29% B 
over 7 min and 29% B to 65% B over 1 min before wash-
ing for 4  min at 65% B and dropping down to 2% B in 
1 min. The complete method time was 85 min.

The analytical column was connected to a Thermo 
Exploris 480 mass spectrometry system via a Thermo 
nanospray Flex Ion source via a 20 µm ID fused silica cap-
illary. The capillary was connected to a fused silica spray 
tip with an outer diameter of 360 µm, an inner diameter 
of 20 µm, a tip orifice of 10 µm and a length of 63.5 mm 
(New Objective Silica Tip FS360-20-10-N-20–6.35CT) 
via a butt-to-butt connection in a steel union using a cus-
tom-made gold frit (Agar Scientific AGG2440A) to pro-
vide the electrical connection. The nanospray voltage was 
set at 1900 V and the ion transfer tube temperature set to 
275 °C.

Data was acquired in a data dependent manner using a 
fixed cycle time of 1.5 s, an expected peak width of 15 s 

and a default charge state of 2. Full MS data was acquired 
in positive mode over a scan range of 300 to 1750 Th, 
with a resolution of 120,000, a normalized AGC target of 
300% and a max fill time of 25 mS for a single micros-
can. Fragmentation data was obtained from signals with 
a charge state of + 2 or + 3 and an intensity over 5000 and 
they were dynamically excluded from further analysis for 
a period of 15 s after a single acquisition within a 10-ppm 
window. Fragmentation spectra were acquired with a 
resolution of 15,000 with a normalized collision energy of 
30%, a normalized AGC target of 300%, first mass of 110 
Th and a max fill time of 25 mS for a single microscan. All 
data was collected in profile mode.

Mass spectrometry data analysis and statistics
Raw data for regional airway cell samples were processed 
using MaxQuant [25] version 1.6.17.0 against the human 
proteome obtained from uniprot (May 2021) [26]. Raw 
data for UIP and mucinous adenocarcinoma mucus sam-
ples were processed using MaxQuant [25] version 2.0.3.0 
against the human proteome obtained from uniprot (May 
2022) [26]. All Maxquant processing were performed 
with a fixed modification of carbamidomethylation of 
cysteine, with variable modifications of methionine oxi-
dation and protein N-terminal acetylation. Precursor 
tolerance was set at 20 ppm and 4.5 pm for the first and 
main searches, with MS/MS tolerance set at 20 ppm. A 
false discovery rate (FDR) of 0.01 was set for PSM and 
protein level, up to two missed cleavages were permitted 
and “match-between-runs” was selected.

Stastical analysis was carried out in R (v4.1.2) [27] 
using the MSqRob package (v0.7.7) [28]. Significantly 
changing proteins were taken at a 5% false discovery rate 
(FDR). Pathway analysis utilising Reactome Pathways was 
performed on significantly changing proteins using the R 
package ReactomePA (1.38.0) [29].

Results
Laser capture microdissection of fibrotic and non‑fibrotic 
airway cells
Figure 1 shows our approach to laser capture microdis-
section (LCM). Using alcian blue/ periodic acid Schiff ’s 
(AB/PAS) stain, mucus is visualized as purple in color 
within the fibrotic honeycomb airway (Fig.  1A, upper 
row). Note how the AB/PAS stain lines the airway cells 
(red arrows) in a manner that suggests mucin is being 
secreted centrally into the airway lumen. We show that 
we precisely captured the mucus in a fibrotic specimen, 
including its cellular infiltrates (Fig.  1A, middle row). 
In addition, we captured the mucin-rich epithelial lin-
ing of honeycomb airways (Fig. 1A, lowest row) and the 
fibrotic uninvolved airway cells defined as being in dis-
tant regions demonstrating minimal fibrosis (Fig.  1B). 
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Our LCM capabilities allow us to precisely isolate this 
region while leaving behind mucus associated in unin-
volved airways, denoted with a red asterisk. To serve as 
a control, we performed LCM on airway cells from non-
fibrotic control specimens (Fig.  1C). In total, we per-
formed LCM on 10 fibrotic specimens (n = 10 fibrotic 
honeycomb airway cells, n = 10 fibrotic uninvolved air-
way cells) and on 6 non-fibrotic airway control cells (a 
total of 26 samples and a total of 16 patients).

The fibrotic honeycomb and uninvolved airway cells are 
similar in protein composition
We prepared our samples for mass spectrometry (MS) 
following our established protocol [19, 20] and per-
formed a qualitative analysis to determine which pro-
teins were present per group: non-fibrotic control (n = 6 
patients), fibrotic uninvolved (n = 10 UIP patients), and 
fibrotic honeycomb airway cells (n = 10 UIP patients). 
We define a protein present if it is detected in 3 of the 

Fig. 1 Laser capture microdissection of the mucus, fibrotic honeycomb, fibrotic uninvolved and non-fibrotic airway cell controls. Formalin-fixed 
paraffin-embedded specimens were serially sectioned at 5 microns and stained with alcian blue/periodic acid Schiff’s (AB/PAS) stain or Hematoxylin 
& Eosin (H&E). A A representative image of laser capture microdissection in one fibrotic specimen. AB/PAS (Top left) or H&E (the other 5 panels). 
Mucus (purple) was visualized with AB/PAS stain; notice how the mucin lines the inner airway consistent with these cells producing mucin centrally 
into the airspace [red arrows]. We individually captured the mucus and fibrotic honeycomb airway cells for mass spectrometry preparation. B In 
the same fibrotic patient, we found uninvolved airways in the morphologically intact regions of the fibrotic lung and captured the airway cells for 
mass spectrometry preparation (notice how the mucus plug is left behind depicted with red asterisk). C A representative image of laser capture 
microdissection of a non-fibrotic airway control captured for mass spectrometry preparation. Scale bar represents 100 microns
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Fig. 2 Spatial proteomic analysis of the fibrotic airway cells. Fibrotic and non-fibrotic control specimens were subjected to laser capture 
microdissection coupled mass spectrometry (LCM-MS) to collect non-fibrotic airway cells (n = 6 control patients), fibrotic uninvolved airway cells 
(n = 10 UIP patients), and fibrotic honeycomb airway cells (n = 10 UIP patients). A Venn diagram showing the number of proteins found in each 
airway cell type. B 3-D Principal component analysis showing that the non-fibrotic airway cells (red dots) cluster away from the fibrotic airway cells 
(the other dots). Surprisingly, fibrotic uninvolved airway cells (yellow dots) and honeycomb airway cells (green dots) cluster together
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6 non-fibrotic airway cell samples or 5 of the 10 fibrotic 
airway cell samples. We detected 2668 proteins in human 
lung airway cells (Fig. 2A) and provide a complete list of 
these proteins (Additional file  2). We found that more 
proteins are detected in fibrotic honeycomb airway cells, 
which may be attributed to the metabolically demanding 
process of mucin production [30].

We next performed a quantitative analysis, which com-
pared the relative abundance of the detected proteins, to 
create a 3-dimensional (3-D) principal component analy-
sis (PCA) (Fig.  2B). Firstly, we showed that non-fibrotic 
airway cells (red dots) separate from both the fibrotic 
honeycomb (green dots) and fibrotic uninvolved airway 
cells (yellow dots). Surprisingly, we found that both the 
fibrotic honeycomb airway cells and fibrotic uninvolved 
airway cells closely cluster with some deviation. This 
analysis suggests that fibrotic uninvolved airway cells 
(found in morphologically intact lung) display an abnor-
mal protein profile similar to the mucin-rich honeycomb 
airway cells (found within the densely fibrotic region of 
the lung).

Honeycomb airway cells are enriched in proteins involved 
in mucin biogenesis and have decreased cilia‑associated 
proteins
Although the fibrotic honeycomb and fibrotic uninvolved 
airway cells cluster by PCA, we sought to further com-
pare these groups. Of the 2,957 proteins detected, we 
found that there are 101 proteins significantly increased 
in fibrotic honeycomb airway cells while 18 are statisti-
cally increased in the fibrotic uninvolved airway cells 
(Fig. 3A, a full list in Additional file 3). A list of the high-
est and lowest proteins is provided in Table 1. Consistent 
with our approach of capturing mucin-rich honeycomb 
airway cells, we found that MUC5B is significantly 
increased in the fibrotic honeycomb airway cells and not 
in the fibrotic uninvolved airway cells.

Strikingly, many of the proteins increased in the fibrotic 
honeycomb airway cells are involved in mucin biogenesis 
and/or regulation. For instance, bactericidal/permeabil-
ity-increasing (BPI) fold-containing family B member 1 
(BPIFB1) is a negative regulator of MUC5B expression 
[31] and is at the top of the list. Similarly, secretory leu-
kocyte protease inhibitor (SLPI) reduces mucin expres-
sion in  vitro and is enriched in the fibrotic honeycomb 
airway cells [32]. This suggests that negative regulators of 
mucin expression in lung fibrosis are insufficient to stop 
mucin production. In accord, Reactome pathway analy-
sis demonstrated that a variety of pathways pertaining to 
mucin production are increased, such as ‘Post-transla-
tional protein modification’, ‘Transport to the Golgi and 
subsequent modification’, and ‘ER-phagosome pathway’ 

(Fig. 3B); however, it is noteworthy that mucin biogenesis 
is not an established Reactome pathway.

Reactome pathway analysis also demonstrates that 
‘extracellular matrix organization’ and ‘elastic fibre for-
mation’ are decreased in the fibrotic honeycomb airway 
cells (Fig.  3C). We confirm that there are disorganized 
elastic fibres in the honeycomb airways, which is in 
accord with the loss of airway structure and increased 
fibrosis in this region (Additional file 1: Figure S3). Thus, 
spatial proteomics identifies a pro-mucin protein signa-
ture associated with the fibrotic honeycomb airway cells 
as compared to fibrotic uninvolved airway cells.

Cilia are conserved organelles that function to clear 
airway mucus and associated debris. Herein, we dem-
onstrated that multiple proteins associated with cili-
ogenesis are decreased in the fibrotic honeycomb airway 
cells. For instance, Centrosomal protein 135 (CEP135) is 
the most decreased protein and is required for ciliogen-
esis initiation [33]. To demonstrate that abnormal cili-
ogenesis is a potential mechanistic theme in the fibrotic 
honeycomb airway cells, we immunostained for tubulin 
alpha 4a (TUBA4A; a marker of cilia) in 4 UIP speci-
mens and 2 controls. We found that the cilia marker is 
widely expressed in cells lining the airway cells of non-
fibrotic and fibrotic uninvolved airways (Fig.  4A, B). In 
contrast, the mucin-rich regions of the honeycomb air-
way (red arrows) are largely devoid of cilia (black arrows) 
(Fig. 4C). Thus, our dataset confirms features of honey-
combing offering a variety of known and new targets to 
understand fibrosis progression.

Fibrotic uninvolved airway cells have an abnormal protein 
signature
We next compared fibrotic airway cells (n = 10 UIP 
patients) to the non-fibrotic airway cells (n = 6 control 
patients). We showed that 333 proteins are significantly 
increased in the fibrotic honeycomb airway cells, whereas 
157 proteins are significantly increased in the non-
fibrotic airway cell controls (Fig.  5A; a full list in Addi-
tional file  3). Reactome pathway analysis demonstrated 
that ‘regulation of expression of SLITs and ROBOs’ and 
‘Signaling by ROBO receptors’ are the strongest catego-
ries increased in the fibrotic honeycomb airway cells as 
compared to non-fibrotic controls (Fig. 5B). The slit pro-
tein and their roundabout receptors (Slit and Robo) path-
way is largely involved in cell migration [34].

We next compared the fibrotic uninvolved airway cells 
(n = 10 UIP patients) to the non-fibrotic airway cells 
(n = 6 control patients). We detected 178 proteins sig-
nificantly increased in fibrotic uninvolved airway cells, 
whereas we found 202 proteins significantly increased 
in non-fibrotic airway cell controls (Fig. 5C; a full list in 
Additional file  3). Surprisingly, the 15 highest proteins 
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increased in the fibrotic uninvolved airway cells are also 
increased in the fibrotic honeycomb airway cells. Reac-
tome pathway analysis again show that ‘Regulation of 
expression of SLITs and ROBOs’ and ‘Signaling by ROBO 
receptors’ are the strongest categories in the fibrotic 
uninvolved airway cells as compared to non-fibrotic con-
trols (Fig. 5D);  we do not detect any decreased Reactome 
pathways for either fibrotic airway cells as compared to 
control.

A heatmap of the 568 significantly changed pro-
teins across the groups: fibrotic honeycomb, fibrotic 

uninvolved, and non-fibrotic airway cell controls is 
shown in Fig.  6A (a full list in Additional file  4). The 
fibrotic honeycomb airway cells share features with 
the fibrotic uninvolved airway cells. We next show the 
25 highest and lowest changed proteins (Fig.  6B). Ras-
related protein 3D (RAB3D) was the most increased 
in the fibrotic honeycomb airway cells and is involved 
in the biogenesis of secretory granules [35]. MUC5B 
and MUC5AC are both packaged in the secretory gran-
ules of airway cells [36]. Similarly, prolyl endopeptidase 
(PREP) is found within exosomes in airway cells and 

Fig. 3 The fibrotic honeycomb airway cells have a pro-mucin protein signature. A Volcano plot comparing the fibrotic honeycomb [HC] airway 
(n = 10 UIP patients) to fibrotic uninvolved airway cells (n = 10 UIP patients) showing the negative natural log of the false discovery values (FDR) 
values plotted against the base 2 log (fold change) for each protein. Reactome pathway showing the most B increased or C decreased for the 
fibrotic honeycomb airway cells compared to fibrotic uninvolved airway cells
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released upon LPS stimulation [37]. Cyclase associated 
protein 1 (CAP1) is associated with lung cancer and 
post-translational modification promotes proliferation 
and migration [38]. At the bottom of the list are dynein 
axonemal assembly factor 2 (DNAAF2), matrix gla pro-
tein (MGP), and agrin (AGRN) which are only decreased 
in the fibrotic honeycomb airway cells (detected in the 
fibrotic uninvolved and non-fibrotic airway cell controls). 
DNAAF2 is involved in cilia homeostasis and mutations 
in DNAAF2 lead to cilia defects [39]. MGP is consid-
ered an inhibitor of calcification based on the extensive 
cardiovascular calcification observed in MGP-null mice 
[40]; calcification occurs in UIP/IPF patients, and is asso-
ciated within regions of honeycombing [41]. AGRN is a 
proteoglycan that serves a variety of biological functions, 
including the promotion of regeneration [42]. Further 
work interrogating the collective roles of these changed 
proteins might help decipher the mechanism of fibrosis 
progression. Given that similar pathways and proteins are 
increased in the fibrotic uninvolved airway cells as the 
fibrotic honeycomb airway cells, our data indicate that 
fibrotic uninvolved airway cells are abnormal.

The composition of fibrotic lung mucus
Utilizing our MS approach, we detected 650 proteins in 
the fibrotic/UIP mucus plugs (detected in 3 or more of 
the 6 samples; Additional file  5). Using intensity Based 
Absolute Quantification (iBAQ; a measure of protein 
abundance) [43], we provide a list of the most abundant 

proteins in UIP mucus (Additional file  6). We found 
that the mucus is enriched with immunoglobulins (Ig) 
which is in accord with increased protein expression 
of polymeric Ig receptor (PIGR) in the fibrotic honey-
comb airway cells and mucus. In epithelial cells, PIGR 
mediates the transcytosis of Igs into the airway, which 
serves as a mucosal defence mechanism [44]. Given that 
fibrotic mucus is enriched with cellular infiltrates, we 
next focused our list using the ‘secretome’ (secreted pro-
teins) dataset [45] and show that BPIFB1 was the most 
abundant secretome-associated protein found in fibrotic 
mucus whereas MUC5B is the ninth most abundant 
(Fig. 7A; a full list in Additional file 7). This is consistent 
with BPIFB1 and MUC5B being amongst the most signif-
icantly expressed proteins in the fibrotic honeycomb air-
way cells (Fig. 3A). To validate some the most abundant 
protein hits, we show immunoreactivity for MUC5B, 
BPIFB1, PIGR, and TF within the UIP mucus plugs 
(Fig. 7B). We also included the other gel-forming mucin, 
MUC5AC (60th on the abundance list), which showed a 
patchy/incomplete staining pattern.

Using the entire fibrotic mucus proteome, Reactome 
pathway enrichment analysis demonstrates that the 
mucus plug is defined by ‘neutrophil degranulation’ as 
the strongest category (Fig. 7C). The neutrophil degran-
ulation pathway is also implicated in SARS-CoV-2 lung 
infection models [46] and in chronic obstructive pulmo-
nary disease (COPD) [47]; in IPF bronchoalveolar lavage 
fluid (BALF), proteins associated with neutrophil gran-
ules are amongst the most abundant [48].

Fibrotic‑derived lung mucus is distinct from cancer‑derived 
lung mucus
Due to the absence of mucus in non-fibrotic airway con-
trols, we sought to further understand mucus in the con-
text of another lung disease. We performed LCM-MS 
on 6 mucinous adenocarcinoma specimens (Additional 
file 1: Fig. 4A). mucinous adenocarcinoma is a lung can-
cer with pronounced mucus accumulation within the 
alveolar space [22, 49]. We detected a total of 535 pro-
teins in mucinous adenocarcinoma mucus (found in 3 
or more of the 6 samples; a full list in Additional file 5). 
Consistent with MUC5AC being the most abundantly 
expressed transcript in mucinous adenocarcinoma 
[50], MUC5AC protein is the second most abundant 
secretome-associated protein found in the mucus of 
mucinous adenocarcinoma (Additional file  1: Fig.  4B, a 
full list in Additional file 6). Reactome pathway analysis 
demonstrates that mucinous adenocarcinoma mucus is 
defined by ‘Neutrophil degranulation’, like fibrotic mucus, 
as the strongest category (Additional file 1: Fig. 4C).

We next compared the mucus of mucinous adeno-
carcinoma to UIP. In total, we detected 707 lung mucus 

Table 1 Highest and lowest 15 significantly changed proteins 
in the fibrotic honeycomb airway cells compared to fibrotic 
uninvolved airway cells

Increased in fibrotic honeycomb 
airway cells

Decreased in fibrotic 
honeycomb airway cells

Protein Log2 FDR Protein Log2 FDR

BPIFB1 3.97 4.60E−24 CEP135 − 1.30 3.18E−02

DHRS9 3.79 1.40E−03 COL8A1 − 1.23 3.28E−03

MUC5B 3.65 1.70E−21 FBLN2 − 1.00 2.16E−02

S100P 2.77 2.40E−19 LRRC45 − 0.90 2.88E−02

FAM3D 2.73 2.90E−02 TTC21B − 0.86 3.29E−03

BPIFA1 2.52 7.40E−04 LAMB2 − 0.75 3.40E−04

LCN2 2.20 3.13E−13 APCS − 0.74 4.45E−02

CRABP2 2.08 3.22E−02 CGN − 0.74 1.45E−02

DMBT1 1.74 4.82E−03 FBN1 − 0.72 2.24E−02

CPD 1.68 2.30E−06 IFT57 − 0.72 4.30E−05

ST6GAL1 1.64 1.02E−02 NCEH1 − 0.69 6.30E−04

IGJ 1.55 3.763E−03 PLG − 0.63 8.00E−03

AGR2 1.53 1.00E−05 H1F0 − 0.62 6.25E−03

FKBP11 1.49 1.53E−02 CYP51A1 − 0.60 2.90E−02

SLPI 1.46 1.80E−04 CERS2 − 0.59 2.59E−02
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proteins (Fig.  8A), with UIP having the most proteins 
detected (a full list in Additional file  5). A 3-D PCA 
analysis showed that UIP mucus samples largely clus-
ter together, whereas only one mucinous adenocarci-
noma sample overlaps with UIP (Fig.  8B). Quantitative 
analysis of our data show that 9 proteins are significantly 
enriched in fibrotic mucus whereas 3 are significantly 
enriched in mucinous adenocarcinoma mucus (Fig.  8C, 
a full list in Additional file  8). To validate this result, 
we performed immunofluorescence on both mucinous 
adenocarcinoma (n = 3) and UIP specimens (n = 4) for 
MUC5B, MUC5AC, and BPIFB1 (Fig. 8D). We found that 
UIP mucus has variable expression of MUC5AC (white 
arrows mark the absence of MUC5AC where MUC5B/
BPIFB1 is present) in comparison to MUC5B. Note that 
one mucus plug was positive for MUC5AC, which resem-
bles the chromogenic patchy/incomplete stain in Fig. 7B; 
MUC5AC has been previously reported to have vari-
able staining [10]. Inversely, mucinous adenocarcinoma 

mucus was positive for MUC5AC, whereas MUC5B and 
BPIFB1 are largely negative at the immunofluorescence 
level (Fig. 8E, white arrows point where MUC5B/BPIFB1 
are absent). Thus, a distinguishing factor for fibrotic/UIP 
mucus is the high abundance of MUC5B and BPIFB1, 
whereas MUC5AC is predominant in mucinous adeno-
carcinoma mucus.

Discussion
In this work, we aimed to create a protein tissue atlas 
of airway cells to understand fibrosis progression. We 
produced an unbiased spatial proteomic profile of the 
non-fibrotic, fibrotic uninvolved and honeycomb air-
way cells to highlight pathways that may intercept fibro-
sis progression (Fig. 9). We showed that the structurally 
intact low-in-mucus airway cells in uninvolved regions 
of the fibrotic lung share an abnormal protein signature 
with fibrotic honeycomb airway cells featuring increased 
Slit and Robo pathway as the strongest category. Given 

Fig. 4 Cilia expression in the fibrotic honeycomb airway cells. Two non-fibrotic control and 4 fibrotic patient specimens were stained for alcian 
blue/periodic acid Schiff’s (AB/PAS) or immunostained for TUBA4A (a marker of cilia). Shown are representative images for A non-fibrotic control 
airway, B fibrotic uninvolved airways, and C fibrotic honeycomb airways. Note that regions of mucin positivity (red arrows) are absent of cilia (black 
arrows) in the fibrotic honeycomb airway cells. Scale bar represents 100 microns
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Fig. 5 The fibrotic uninvolved airway cells have an abnormal protein signature. A Volcano plot comparing the fibrotic honeycomb [HC] airway 
cells (n = 10 UIP patients) to non-fibrotic airway cells (n = 6 control patients) showing the negative natural log of the false discovery values (FDR) 
values plotted against the base 2 log (fold change) for each protein. B Reactome pathway showing the most increased pathway for the fibrotic 
honeycomb airway cells compared to non-fibrotic airway cells. C Volcano plot comparing the fibrotic uninvolved airway cells (n = 10 UIP patients) 
to non-fibrotic airway cells (n = 6 control patients) showing the negative natural log of the FDR values plotted against the base 2 log for each 
protein. D Reactome pathway showing the most increased pathway for the fibrotic uninvolved airway cells compared to non-fibrotic airway cell 
controls
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that Slit and Robo pathway is primarily implicated in 
cell migration, lung injury and development [34, 51–
53], we speculate that Slit and Robo may be part of the 
mechanism of fibrosis initiation. This is supported with 
the recent finding that IPF airway epithelium have an 
increased migratory phenotype [54]. Thus, the data here 
will be the premise of future studies interrogating the 

mechanistic impact of Slit and Robo pathway in lung 
fibrosis.

In accord with our current understanding of lung fibro-
sis, this unbiased approach confirms that the fibrotic 
honeycomb airways are the site of mucin biogenesis 
with other categories related to protein modification 
and transport increased. For instance, retinoic acid 

Fig. 6 Fibrotic airway cells differ than controls. Shown are heatmaps of A all 568 statistically changed proteins or B the highest and lowest 25 
proteins in the fibrotic honeycomb [HC] (n = 10 UIP patients), fibrotic uninvolved (n = 10 UIP patients), and non-fibrotic airway cells (n = 6 control 
patients). Proteins are arranged by increasing abundance with reference to the honeycomb airway cells
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signalling induces mucin gene expression and secretion 
[55, 56]; Dehydrogenase reductase SDR family member 
9 (DHRS9) and cellular retinoic acid-binding protein 2 
(CRABP2) both modulate retinoic acid synthesis and 
are increased in the fibrotic honeycomb airway cells. 

Recently, CRABP2 was shown to be increased in IPF air-
way cells [57]. In accord with mucin biogenesis, anterior 
gradient homolog 2 (AGR2) has been shown to be essen-
tial for MUC2 production and FK506-binding protein 
11 (FKBP11) has been demonstrated to have a mucin 

Fig. 7 The composition of fibrotic mucus. Laser capture microdissection coupled mass spectrometry was performed on the mucus plugs of 6 
Usual Interstitial Pneumonia (UIP) patients. A A list of the most abundant secretome-associated proteins found in the fibrotic mucus shown as 
intensity Based Absolute Quantification (iBAQ). B Reactome pathway enrichment of UIP mucus represented as a dotplot. C Serial sections of UIP 
specimens stained for alcian blue/periodic acid Schiff’s (AB/PAS) or immunostained for MUC5B, MUC5AC, BPIFB1, PIGR, and TF (N = 4 UIP patients 
with 2 representative images shown). Scale bar represents 100 microns
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secretory function [58]. Both AGR2 and FKBP11 are 
increased in the fibrotic honeycomb airway cells. Some 
unique proteins to the fibrotic honeycomb airway cells 
include GALNT12, GALNT3, ST6GAL1, and GALNT6, 
which are associated with O-linked glycosylation of 
mucins. Although a subset of these results are confirma-
tory to airway derangements in lung fibrosis, this rich 
dataset leaves readers with many novel proteins for which 
their functions in fibrosis progression are unknown.

Aberrant ciliogenesis has previously been described 
in UIP/IPF. Whole transcriptomic studies demonstrate 

an elevation of cilium gene expression [59]. In contrast, 
our results demonstrate a reduced cilia-associated pro-
tein profile within the fibrotic honeycomb airway cells. 
This likely reflects the advancement of our spatial pro-
teomic capability. Ciliogenesis relies on a variety of 
proteins, including intraflagellar transport (IFT) pro-
teins [60]. Intraflagellar transport protein 57 (IFT57) 
is required for cilia maintenance and is decreased in 
the fibrotic honeycomb airway cells; other intraflagel-
lar transport proteins (IFT81, IFT46) are not expressed 
in the fibrotic honeycomb airway cells but expressed 

Fig. 8 The mucus in usual interstitial pneumonia has distinct features from mucinous adenocarcinoma. A Venn diagram showing the proteins 
detected in the mucus of mucinous adenocarcinoma [MA] (n = 6 patients) or usual interstitial pneumonia (UIP; n = 6 patients). B 3-dimensional 
principal component analysis for each mucus type. C Volcano plot comparing the UIP mucus to mucinous adenocarcinoma mucus showing the 
negative natural log of the false discovery values (FDR) values plotted against the base 2 log (fold change) for each protein. D Immunofluorescence 
for MUC5B, MUC5AC, and BPIFB1 in UIP mucus (n = 4 patients) and mucinous adenocarcinoma mucus (n = 3 patients) with representative images 
shown for each disease type. White arrows points to regions of mucus accumulation and asterisk shows positivity of MUC5AC within UIP mucus. 
Scale bar represents 100 microns
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in the non-fibrotic or fibrotic uninvolved airway cells. 
Leucine-rich repeat protein 21B (LRRC45) and tetratri-
copeptide repeat protein 21B (TTC21B) are critical 
for ciliogenesis and are also decreased in the fibrotic 
honeycomb airway cells [61, 62]. A variety of proteins 
that are not expressed in the fibrotic honeycomb air-
way cells include proteins associated with cilia func-
tion, such as CEP131, CCP110, KIF3A, CYB5D1, 
DYNLRBR2, RPGR, and WRD66 [63–69]. In support 
of a deranged cilia phenotype, transmission electron 
microscopy demonstrates that the UIP/IPF distal air-
ways display defects in microtubule organization [70]. 
In the context in cystic fibrosis, it is reported that air-
way epithelial also have decreased ciliated cells with 
enhanced mucin expression [71]. Thus, future studies 
determining the mechanism of deranged ciliogenesis is 
warranted.

Other groups support our results that demonstrate 
that the fibrotic uninvolved airway cells are abnormal 
at the structural and genetic level. Lung fibrosis is asso-
ciated with a variety of genetic risk factors affecting 
epithelial cells, which may abnormally prime lung air-
way cells to fibrosis initiation [72]. Structurally, regions 
without microscopic fibrosis are shown to have reduced 
numbers of terminal airways and have an increase of 
airway wall areas [4–6], suggesting that early lung air-
way perturbations precede fibrotic extracellular matrix 
remodelling. Thus, it is plausible that airway cell dys-
function is an early event in the fibrotic process. Fur-
ther LCM-MS studies with precise distance registration 

and patient genotyping will inform whether there exists 
a transition zone where a normal airway proteome 
is present, or perhaps it may be that the entire airway 
proteome is abnormal.

Current literature suggests that basal airways cells 
differentiate into either mucin producing cells or cilia-
containing cells [73]. Our spatial proteomic data fits the 
notion that the honeycomb airway microenvironment 
directs the differentiation of basal airway cells into mucin 
producing cells whereas the uninvolved airway microen-
vironment favors ciliated cells. Given that extracellular 
matrix governs cell differentiation and function [74], we 
speculate that changes to extracellular matrix proper-
ties (mechanical, composition, and topography) within 
the honeycomb airway may play a role in airway cell dif-
ferentiation and mucin biogenesis. Prior work utilizing 
decellularized COPD airway tissue as a scaffold for cell–
matrix interactions (as compared to donor) show that 
COPD matrix dramatically affects cilia gene expression 
in epithelial cells [75]. Other studies using decellularized 
UIP/IPF tissue confirm that fibrotic matrix is a driver of 
fibrosis progression [76]. Therefore, the changes in mucin 
and cilia-associated proteins may be reflective, or a con-
sequence of the changes in airway extracellular matrix 
properties.

Our spatial proteomic data characterizing fibrotic hon-
eycomb airway cells (MUC5B-positive) are in agreement 
with sc-RNAseq data characterizing MUC5B-positive 
secretory cells in human lung. In one study, secretory 
airway cells have increased RNA expression of MUC5B, 

Fig. 9 The fibrotic honeycomb airway. Spatial proteomics reveal that the fibrotic uninvolved airway cells (found in regions of structurally intact 
lung) have an abnormal protein signature. The fibrotic uninvolved airway cells, like the honeycomb airway cells (a pathological feature of lung 
fibrosis), are over-represented in proteins associated with slits and Roundabout protein (Slit and Robo) pathway. The fibrotic honeycomb airway 
cells are further defined by increased pathways associated with mucin biogenesis, and a loss of both cilia and ECM organization/elastic fibres. We 
find that the mucus proteome is enriched with neutrophil degranulation pathway, with a marked increase of BPIFB1 protein
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LCN2, BPIFB1, SERPINB3, S100P, RARRES1, TSPAN8, 
CP, and FAM3D [77], which are also increased or 
uniquely expressed at the protein level in fibrotic honey-
comb airway cells. Other mRNAs increased in MUC5B-
positive secretory cells include TSPAN1, AKR1C1, 
ZG16B, GSTA1, and SCGB1A1, which are unchanged at 
the protein level in the fibrotic honeycomb airway cells. A 
separate study showed that MUC5B-positive cells by sc-
RNAseq have increased mRNA expression of SCGB1A1, 
SCGB3A1, SLPI, BPIFB1, LCN2, and WFDC2 [78]. At 
the protein level, SLPI, BPIFB1, LCN2, and WFDC2 
are increased or uniquely expressed in the fibrotic hon-
eycomb airway cells (SCGB1A1 and SCGB3A1 are 
unchanged at the protein level). Thus, the fibrotic hon-
eycomb airway cells represent a secretory cell pheno-
type. Future work integrating spatial multi-omic analysis 
(RNA and protein) will further our understanding of lung 
fibrosis.

To our knowledge, we are the first to determine the 
composition of UIP mucus plugs by using a LCM-MS 
approach. This approach allows precise capture of the 
entirety of mucus plugs without the introduction of con-
taminants (salivary and upper airway proteins) as seen by 
traditional BALF. Proteomic analysis of BALF (an unfixed 
or stained sample) from lung fibrosis patients show 
agreement with our findings. Several reports utilizing 
mass spectrometry approaches show increases of immu-
noglobulins, complement C3, transferrin, Apolipoprotein 
A1, plastin-2, annexin A2, and CCL18 in fibrotic lung 
BALF (summarized in [79]); all of which are detected in 
our LCM-MS dataset. In accord with our findings, Fos-
ter et al. demonstrated that MUC5B is an abundant pro-
tein in IPF BALF [48]. S100A9, detected by LCM-MS, is 
a potential BALF biomarker in IPF [80]. In addition, IPF 
patients with acute exacerbations show increased PIGR, 
LRG1, and SERPINA1 in BALF, which are also detected 
in our LCM-MS dataset [81]. Our LCM-MS approach is 
therefore a useful tool to determine the protein composi-
tion of mucus in archived formalin-fixed paraffin-embed-
ded specimens.

Our results demonstrate that the mucus found in lung 
cancer (mucinous adenocarcinoma) has elevated levels of 
MUC5AC as compared to UIP mucus. A likely explana-
tion is that the mucin-secreting cells comprising the UIP/
IPF honeycomb airway differ than the mucin-secreting 
cells in mucinous adenocarcinoma and/or that the envi-
ronmental/immune signals controlling mucin production 
differ. For instance, reports show that there are 5 times 
more MUC5B-positive cells versus MUC5AC-positive 
cells in the honeycomb airways of UIP/IPF, suggest-
ing marked cell type heterogeneity [82]. In contrast, the 
morphology of mucinous adenocarcinoma cells are dis-
tinct and composed of goblet and/or columnar cells [83]. 

Another explanation is that MUC5AC gene expression is 
differentially regulated as compared to MUC5B [84]. For 
instance, MUC5AC gene expression is increased by IL-13. 
In other disease settings, MUC5AC mRNA is increased 
in asthma, whereas MUC5B levels are decreased [85]. 
Further studies determining the functional consequence 
of varying MUC5AC to MUC5B protein ratios on fibrosis 
progression are needed.

Increases of BPIFB1 in both the UIP mucus and hon-
eycomb airway cells is of interest. BPIFB1 is a secretory 
protein that is implicated in immune regulatory functions 
and shown to have anti-tumor effects (reviewed in [86]). 
In other lung disorders, BPIFB1 is increased in cystic 
fibrosis, COPD, asthma, and IPF [87]. It is decreased 
in nasopharyngeal carcinoma, gastic cancer, and lung 
cancer, which agrees with our findings that mucinous 
adenocarcinoma mucus has low expression of BPIFB1. 
Understanding of its function in lung fibrosis is currently 
incomplete.

Conclusion
Spatial proteomics has allowed us to create an unbiased 
protein tissue map of the fibrotic/UIP lung airway cells. 
We show that the fibrotic honeycomb airway cells are 
the active site of mucin biogenesis affiliated with a loss 
of cilia. Importantly, we show that the fibrotic uninvolved 
airway cells have an abnormal protein signature. Thera-
peutic intervention of the fibrotic uninvolved airway cells 
may therefore slow fibrosis progression.
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