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Abstract
Background Cellular senescence is a cell fate in response to diverse forms of age-related damage and stress that has 
been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The associations between circulating levels 
of candidate senescence biomarkers and disease outcomes have not been specifically studied in IPF. In this study we 
assessed the circulating levels of candidate senescence biomarkers in individuals affected by IPF and controls and 
evaluated their ability to predict disease outcomes.

Methods We measured the plasma concentrations of 32 proteins associated with senescence in Lung Tissue 
Research Consortium participants and studied their relationship with the diagnosis of IPF, parameters of pulmonary 
and physical function, health-related quality of life, mortality, and lung tissue expression of P16, a prototypical marker 
of cellular senescence. A machine learning approach was used to evaluate the ability of combinatorial biomarker 
signatures to predict disease outcomes.

Results The circulating levels of several senescence biomarkers were significantly elevated in persons affected by IPF 
compared to controls. A subset of biomarkers accurately classified participants as having or not having the disease 
and was significantly correlated with measures of pulmonary function, health-related quality of life and, to an extent, 
physical function. An exploratory analysis revealed senescence biomarkers were also associated with mortality in IPF 
participants. Finally, the plasma concentrations of several biomarkers were associated with their expression levels in 
lung tissue as well as the expression of P16.

Conclusions Our results suggest that circulating levels of candidate senescence biomarkers are informative of 
disease status, pulmonary and physical function, and health-related quality of life. Additional studies are needed to 
validate the combinatorial biomarkers signatures that emerged using a machine learning approach.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a progressive and 
fatal interstitial lung disease for which limited therapeu-
tic options exist. As the name implies, the underlying 
mechanisms of IPF are incompletely understood, which 
poses significant challenges for diagnosis and manage-
ment. The heterogenous nature of IPF further compli-
cates early detection, prediction of disease progression, 
and patient selection for and evaluation of response to 
existing and emerging therapies [1–3]. Hence, there is 
considerable interest in identifying accessible, reliable, 
and informative biomarkers of IPF [4].

Advanced chronological age is a primary risk factor for 
IPF. Etiological hallmarks of the disease, including aber-
rant repair and remodeling of the lung interstitium, mir-
ror accelerated aging [5]. Cellular senescence is a cell fate 
in response to diverse forms of age-related damage and 
stress. Senescent cells are characterized by permanent 
growth arrest, resistance to apoptosis, and acquisition 
of a robust senescence-associated secretory phenotype 
(SASP) comprised of cytokines, chemokines, matrix 
metalloproteinases, and growth factors [6, 7]. A grow-
ing body of evidence suggests that the progressive accu-
mulation of senescent fibroblasts and alveolar epithelial 
cells contribute to the pathogenesis of IPF and represent 
a potentially targetable mechanism [8–10]. Moreover, 
since the SASP can exert detrimental effects both locally 
and systemically [11–13], circulating concentrations of its 
components can be exploited as accessible biomarkers of 
senescent cell burden in an organism [14, 15]. However, 
the associations between candidate SASP components, 
the absence/presence of disease, clinically important 
measures, and patient-centered outcomes, have not yet 
been carefully examined in the context of IPF.

In this study, we measured the circulating levels of can-
didate senescence biomarkers in Lung Tissue Research 
Consortium (LTRC) participants and studied their rela-
tionship with the diagnosis of IPF, parameters of pulmo-
nary and physical function, health-related quality of life 
(QoL), mortality, and P16, a prototypical marker of cel-
lular senescence in lung tissue biopsies. By leveraging a 
machine learning approach, we evaluated the ability of 
combinatorial biomarker signatures to predict disease 
outcomes and to also identify the individual biomarkers 
with the greatest importance.

Methods
Study participants
Plasma samples (collected in lithium heparin–coated 
tubes), clinical parameters, and microarray data were 
obtained from a subset of LTRC participants affected 
by IPF or unaffected by IPF (controls). IPF diagnosis 
was based on American Thoracic Society and Euro-
pean Respiratory Society criteria [16]. To the best of 

our knowledge, none of the patients in this cohort were 
receiving antifibrotic therapies. The Mayo Clinic Institu-
tional Review Board approved all aspects of the current 
study. Informed consent was obtained from all partici-
pants in the LTRC, comprising Mayo Clinic, University of 
Colorado, University of Michigan, Temple University and 
University of Pittsburgh.

Measurement of circulating senescence biomarkers
The plasma protein concentrations of ADAMTS13, 
eotaxin, Fas, GDF15, GROα, ICAM1, IL1α, IL6, IL7, 
IL8, IL10, IL15, MCP1, MDC, MIP1α, MIP1β, MMP1, 
MMP7, MMP9, MPO, OPN, PAI1, PARC, RAGE, RAN-
TES, SOST, TARC, TNFR1, TNFR2, TNFα, and VEGFA 
were quantified using commercially available multiplex 
magnetic bead-based immunoassays (R&D Systems) on 
the Luminex xMAP multianalyte profiling platform and 
analyzed on MAGPIX System (Merck Millipore). Activin 
A concentration was determined by a Quantikine ELISA 
Kit (R&D Systems). Protein names, abbreviations, and 
aliases are provided in Additional file 1: Table S1. All 
assays were performed according to the manufacturer’s 
protocols. In instances where a biomarker was below 
the limit of detection in a participant sample, a value of 
half of the lowest measured value for that analyte was 
assigned.

Clinical and molecular outcome measures
We used forced vital capacity (FVC), forced expira-
tory volume in 1 s (FEV1), and diffusing capacity of the 
lung for carbon monoxide (DLCO) as measures of pul-
monary function; St. George Respiratory Questionnaire 
(SGRQ) as a measure of health-related QoL; the 12-Item 
Short Form Health Survey (SF-12) and the 6-minute walk 
test (6MWT) as measures of physical function. Deaths 
among IPF participants were identified from follow-up 
with the patient’s family or physician or by search of the 
national death registry. Microarray data for gene expres-
sion in lung tissue biopsies were based on the probes 
indicated in additional file 1: Table S2.

Statistical methods
Continuous and categorical participant characteristics 
among the control and IPF groups were compared using 
the Kruskal-Wallis rank sum test and the χ2-test, respec-
tively. Kaplan-Meier curve was used to summarize overall 
survival in the IPF group. Spearman’s correlation coeffi-
cients were used to summarize biomarker and functional 
data relationships. Univariate Cox regression models 
were used to assess the relationship between biomarkers 
and overall survival. Least absolute shrinkage and selec-
tion operator (LASSO) regression analysis was used to 
avoid over-fitting and select a minimum set of biomarkers 
for predicting the absence/presence of disease, clinically 
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important measures, patient-centered outcomes, and 
P16 expression in lung tissue biopsies. Cross-validation 
was used to identify the penalty that minimized the 
model error. Because the number of subjects is relatively 
small, the data could not be split into training and testing 
cohorts. Instead, cross-validation approaches were used 
to estimate overall model predictive performance (area 
under the receiver operating characteristic curve (AUC) 
for binary outcomes and R2 for continuous outcomes), 
which helps adjust for the optimism obtained when mod-
els are summarized using the same data as was used to 
fit the model. To ease the interpretation of biomarker 
coefficients, biomarkers were standardized (x-mean)/SD 
prior to inclusion in the models. The knn nearest neigh-
bor approach was used to impute the occasional miss-
ing biomarker value. The R (4.0.3) software package and 
GraphPad Prism 9 were used for statistical analysis and 
generation of graphs. P < 0.05 was considered statistically 
significant.

Results
Participant demographic and clinical characteristics
We studied the clinical data and biospecimens of 180 
LTRC participants, with 95 affected by IPF and 85 
defined as controls (Table  1). The two groups were of 
similar age, body mass index (BMI), and smoking his-
tory, but a lower proportion of participants with IPF were 
women. Regarding health history (Additional file 1: Table 
S3), gastroesophageal reflux disease was more common 
in participants with IPF, while lung and other cancers 
were more common in the control participants. Other 
comorbidities were not different between the two groups.

Participants with IPF showed a significant reduction in 
FVC, DLCO, and FEV1 compared to controls (Table 1). 
Correspondingly, SGRQ scores were significantly higher 
in participants with IPF, suggestive of impaired health-
related QoL. Modest differences were observed between 
groups for self-reported function using the SF-12 and 
performance-based physical function using the 6MWT. 
These clinical findings parallel those reported for the 
entire LTRC cohort [17].

Biomarkers of cellular senescence in participants with IPF 
and controls
We assessed the plasma concentrations of 32 proteins 
associated with senescent cells and the SASP [14]. Strik-
ingly, participants with IPF had significantly higher lev-
els of activin A, eotaxin, GDF15, ICAM1, IL7, IL10, 
MCP1, MDC, MMP1, MMP7, MPO, PARC, RANTES, 
and TARC than controls (Table  2). Conversely, the cir-
culating concentrations of ADAMTS13 and RAGE were 
significantly lower in participants with IPF compared to 
controls.

To evaluate the ability of the biomarker panel to pre-
dict IPF cases, we next leveraged LASSO regression 
analysis, a machine learning approach, to also select the 
most important predictors. As summarized in Fig.  1A 
and Additional file 1 Table S4, the most important bio-
markers in discerning participants with IPF from con-
trols included RAGE, MCP1, MDC, TARC, MMP7, IL10, 
GDF15, GROα, PARC, and VEGFA. The AUC for the 
model to predict the absence or presence of disease was 
0.90 (Fig. 1B), suggesting good discriminatory power.

Associations of senescence biomarkers with clinical and 
patient-centered outcomes
We next evaluated the extent to which biomarkers were 
related to pulmonary function. Unadjusted Spearman’s 
rank correlations evidenced that numerous proteins were 
significantly associated with FVC, DLCO, and FEV1 
(Additional file 1: Table S5-S7). The strongest associa-
tions were observed between FVC and RAGE (r = 0.46, 
p < 0.001), DLCO and MMP7 (r = -0.57, p < 0.001), and 
FEV1 and RAGE (r = 0.39, p < 0.001). After adjusting for 

Table 1 Demographic and Clinical Characteristics of IPF and 
Control Participants

Control
(n = 85)

IPF
(n = 95)

p-value

Age, years
mean ± SD

63.40 ± 10.48 64.81 ± 8.72 0.411*

Sex, females
n (%)

45 (52.9%) 33 (34.7%) 0.014†

BMI, Kg/m2

Mean ± SD
29.51 ± 6.40 30.38 ± 5.90 0.202*

Ever Smoked (> 100)
n (%)

5 (6.5%) 11 (11.8%) 0.236†

Pack Years
Mean ± SD

36.75 ± 35.31 27.26 ± 21.98 0.289*

FVC, % predicted
Mean ± SD

94.51 ± 12.97 68.42 ± 14.59 < 0.001*

DLCO, % predicted
Mean ± SD

83.66 ± 16.62 52.67 ± 16.56 < 0.001*

FEV1, % predicted
Mean ± SD

95.20 ± 12.66 75.59 ± 16.05 < 0.001*

SGRQ
Mean ± SD

12.48 ± 15.52 40.03 ± 19.67 < 0.001*

SF-12
Mean ± SD

48.09 ± 11.28 38.15 ± 10.47 < 0.001*

6MWT, meters
Mean ± SD

418.18 ± 118.42 387.16 ± 89.15 0.004*

Abbreviations: BMI = Body Mass Index; FEV1 = Forced Expiratory Volume in 1 s; 
FVC = Forced Vital Capacity; DLCO = Diffusing Capacity of the Lung for Carbon 
Monoxide; LTRC = Lung Tissue Research Consortium; 6MWT = Six Minute Walk 
Test; SF-12 = 12-item Short Form Health Survey; SGRQ = St. George Respiratory 
Questionnaire.
* p-value represents the comparison between IPF and control participants 
using the Kruskal-Wallis rank sum test.
† p-value represents the comparison between IPF and control participants 
using the Pearson’s chi-squared test.
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age, sex, and BMI, the correlations between biomark-
ers and pulmonary function measures did not substan-
tially change (Fig. 2, Additional file 1: Table S5-S7). The 
circulating concentrations of RAGE, MMP7, MDC, 
MCP1, eotaxin, and PARC emerged from LASSO regres-
sion models as important predictors of FVC, DLCO, 
and FEV1, and several additional senescence biomark-
ers (i.e., MMP1, MMP9, activin A, TARC, IL8, ICAM1, 
and VEGFA) were important determinants of DLCO 
(Fig. 3A-C, Additional file 1: Table S11). Based on cross 
validation, the model predicting DLCO had the highest 
correlation with the measured values (R2 = 0.42), followed 
by the models for FVC (R2 = 0.22), and FEV1 (R2 = 0.13) 
(Fig. 3D-F).

Several biomarkers also demonstrated significant 
unadjusted and adjusted associations with health-related 
QoL (Additional file 1: Table S8). SGRQ scores were 
most strongly associated with plasma levels of PARC 

Table 2 Circulating Biomarkers Measured in the Plasma of IPF 
and Control Participants
Protein Control

n = 85
IPF
n = 95

p-value

Activin A 355.3 ± 193.9 418.4 ± 183.9 0.009
ADAMTS13 932465.0 ± 431528.9 796302.1 ± 368128.0 0.022
Eotaxin 1148.9 ± 469.5 1440.8 ± 667.9 0.002
Fas 8688.8 ± 6202.1 7706.4 ± 2753.8 0.389

GDF15 1463.2 ± 1542.3 2050.8 ± 1343.6 < 0.001
GROα 246.1 ± 311.3 198.0 ± 99.5 0.331

ICAM1 238606.1 ± 183090.8 259886.9 ± 161879.8 0.007
IL1α 6.7 ± 6.7 9.5 ± 15.0 0.112

IL6 10.3 ± 16.8 9.7 ± 7.7 0.219

IL7 3.1 ± 1.9 3.7 ± 1.9 0.022
IL8 6.8 ± 4.3 9.0 ± 14.8 0.134

IL10 22.1 ± 20.6 35.0 ± 42.5 0.015
IL15 1.5 ± 1.3 1.5 ± 1.2 0.616

MCP1 279.6 ± 88.6 363.2 ± 123.8 < 0.001
MDC 454.8 ± 149.7 611.8 ± 215.3 < 0.001
MIP1α 17.0 ± 16.6 22.1 ± 37.8 0.345

MIP1β 370.0 ± 1724.5 162.4 ± 59.5 0.629

MMP1 764.3 ± 813.7 772.9 ± 433.2 0.017
MMP7 2875.3 ± 2516.3 3828.2 ± 1591.5 < 0.001
MMP9 54523.0 ± 70865.2 49,906 ± 56381.2 0.582

MPO 82905.8 ± 111974.0 95750.7 ± 86099.0 0.031
OPN 72451.1 ± 75720.1 52389.8 ± 55664.1 0.086

PAI1 20178.6 ± 11816.0 22684.1 ± 13130.5 0.188

PARC 53061.1 ± 32883.8 72900.6 ± 41964.7 < 0.001
RAGE 1732.7 ± 829.4 1153.8 ± 554.2 < 0.001
RANTES 23107.9 ± 15665.1 32923.4 ± 30574.4 0.004
SOST 442.8 ± 223.6 402.9 ± 207.6 0.183

TARC 433.1 ± 126.7 726.8 ± 720.0 < 0.001
TNFα 9.2 ± 7.2 8.3 ± 5.3 0.466

TNFR1 1518.2 ± 658.4 1370.0 ± 515.7 0.232

TNFR2 3608.3 ± 1910.0 3312.8 ± 1670.1 0.275

VEGFA 42.3 ± 18.8 39.1 ± 16.2 0.380
Data expressed as mean ± SD.

p-value represents the comparison between IPF and control participants using 
the Kruskal-Wallis rank sum test.

Fig. 1 Biomarkers selected by the LASSO regression analysis to predict id-
iopathic pulmonary fibrosis (IPF) diagnosis (A) and area under the receiver 
operating characteristic curve (AUC) for this model (B)
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(r = 0.38, p < 0.001) and GDF15 (r = 0.38, p < 0.001). In 
LASSO regression models, MMP7, PARC, MCP1, and 
TARC levels were again identified as variables of great-
est importance (Fig. 4A, Additional file 1: Table S12). The 
predictive model for SGRQ developed through cross-val-
idation performed modestly (R2 = 0.12) (Fig. 4D).

Regarding self-reported function, a subset of the bio-
markers showed significant unadjusted and adjusted 
associations with participant SF-12 scores (Additional 
file 1: Table S9). The association between plasma con-
centrations of MMP7 and SF-12 score was the strongest 
(r = -0.27, p < 0.001). The LASSO regression analysis 
distinguished PARC, IL6, MCP1, and MMP7 as impor-
tant determinants of self-reported function, along with 
MIP1β, SOST, TNFR2, GROα, and TARC (Fig.  4B, 
Additional file 1: Table S12). However, the ability of 

biomarkers to predict SF-12 score was deemed poor in 
cross-validation models (R2 = 0.01) (Fig. 4E).

A subset of senescence biomarkers had significant 
unadjusted and adjusted associations with the 6MWT, a 
performance-based measure of physical function (Addi-
tional file 1: Table S10). IL6 was most strongly associ-
ated with distance walked (r = -0.30, p < 0.001). Only 
IL6, MMP7, and ADAMTS13 emerged as important 
predictors of 6MWT using LASSO regression (Fig.  4C, 
Additional file 1: Table S12), and the model for predict-
ing walk distance performed poorly (cross-validated 
R2 = 0.07) (Fig. 4F).

Finally, as an exploratory analysis of study partici-
pants with IPF, we examined associations of senescence 
biomarkers and mortality. Over a 6.1-year follow-up 
period, 45 of 93 participants with IPF and follow-up data 

Fig. 2 Heatmap representing the adjusted (for age, sex, and BMI) Spearman’s rank correlations between biomarkers and forced vital capacity (FVC, % 
predicted), diffusing capacity of the lung for carbon monoxide (DLCO, % predicted), forced expiratory volume in 1 s (FEV1, % predicted), St. George Respi-
ratory Questionnaire (SGRQ), 12-Item Short Form Health Survey (SF-12), and 6-minute walk test (6MWT).

 



Page 6 of 13Aversa et al. Respiratory Research          (2023) 24:101 

available for analysis died (Fig. 5A). Age, BMI, and sex did 
not exhibit associations with risk of death (all p-values 
for hazard ratios (HRs) > 0.693). Univariate Cox models 
adjusted for age, BMI, and sex demonstrated that higher 
concentrations of six senescence biomarkers (activin A, 
IL8, GDF15, MMP7, MDC, and TARC) were significantly 
associated with higher risk of death, with HRs ranging 
from 1.34 to 1.54 (all p < 0.026) (Fig. 5B, Additional file 1: 
Table S13).

Association of plasma biomarkers of senescence with gene 
expression levels in the lung
To assess whether circulating biomarker levels were 
associated with senescent cell burden in the lung tis-
sue, we used expression levels of P16 (CDKN2A) and 
P21 (CDKN1A), prototypical markers of cellular senes-
cence, previously captured through microarray analy-
sis [8]. P16 expression was significantly higher in lung 
biospecimens from participants with IPF compared to 
controls (Fig. 6A). The expression levels of P21 were not 
different between groups (p = 0.513). Several circulating 

biomarkers of senescence were positively associated with 
P16 expression before and after adjustment for age, BMI, 
and sex (Additional file 1: Table S14). The strongest asso-
ciations observed were with activin A (r = 0.34, p < 0.001), 
GDF15 (r = 0.32, p < 0.001), and MMP7 (r = 0.30, p < 0.001) 
(Fig.  6B-D). Using LASSO regression, we identified 
activin A, IL1α, Fas, MMP7, eotaxin, MCP1, and MDC, 
as important predictors of lung P16 expression levels 
(Fig. 6E, Additional file 1: Table S15). However, the cross-
validated model R2 for predicting P16 expression with 
this model was low (cross-validated R2 = 0.08).

Consistent with higher levels of P16 expression, lev-
els of gene expression for our top biomarkers includ-
ing CCL11 (eotaxin), CCL17 (TARC), CCL18 (PARC), 
CCL22 (MDC), GDF15, and MMP7 were also signifi-
cantly higher in lung biospecimens from IPF compared 
to control participants (all p < 0.001) (Fig. 7). In contrast, 
expression levels of ADAMTS13, AGER (RAGE), and 
INHBA (activin A) were significantly lower in the lung 
tissue biospecimens of IPF compared to control partici-
pants (all p < 0.001).

Fig. 3 Biomarkers selected by the LASSO regression analysis to predict forced vital capacity (FVC, % predicted) (A), diffusing capacity of the lung for 
carbon monoxide (DLCO, % predicted) (B), and forced expiratory volume in 1 s (FEV1, % predicted) (C); Cross validation plots for the models predicting 
FVC (D), DLCO (E), and FEV1 (F)
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Finally, we examined whether the circulating abun-
dance of our top biomarkers correlated with their gene 
expression levels in lung tissue biospecimens. We found 
that circulating protein concentrations of eotaxin, 
GDF15, MDC, MMP7, PARC, RAGE, and TARC were 
significantly and positively associated with their gene 
expression levels in the lung after adjusting for age, sex, 
and BMI (Table 3).

Discussion
In this study, we found that circulating biomarkers of 
cellular senescence, a cell fate implicated in the biol-
ogy of aging and aging-related diseases, are significantly 
elevated in persons affected by IPF. Using a machine 
learning approach, we identified a subset of biomarkers, 
including RAGE, MCP1, MDC, TARC, MMP7, IL10, 
GDF15, GROα, PARC, and VEGFA, that accurately clas-
sified participants as having or not having the disease and 
contributed to a model that displayed impressive discrim-
inatory power at cross-validation. Correspondingly, these 
senescence biomarkers were significantly correlated with 

measures of pulmonary function, health-related QoL 
and, to an extent, physical function. The plasma concen-
trations of several biomarkers (activin A, IL8, GDF15, 
MMP7, MDC, and TARC) were also significantly associ-
ated with risk of death in IPF participants after adjusting 
for age, BMI, and sex. Importantly, we observed that cir-
culating concentrations of several biomarkers were asso-
ciated with their corresponding gene expression levels in 
lung tissue as well as the expression of P16, a well-defined 
marker of senescent cells. Our data support the premise 
that cellular senescence is a hallmark of IPF and circu-
lating components of the SASP may be of utility in both 
clinical practice and clinical research.

Transcriptional upregulation of core senescence mark-
ers, including the cyclin-dependent kinase inhibitor 
P16 and several SASP components, has been reported 
in experimental murine models of lung fibrosis [8–10]. 
Results from these studies have also indicated that both 
fibroblasts and alveolar epithelial cells are prone to 
senesce in the fibrotic lung, that the robust and dynamic 
secretome of senescent fibroblasts exerts profibrotic 

Fig. 4 Biomarkers selected by the LASSO regression analysis to predict St. George Respiratory Questionnaire (SGRQ) (A), 12-Item Short Form Health Sur-
vey (SF-12) (B), and the 6-minute walk test (6MWT) (C); Cross validation plots for the models predicting SGRQ (D), SF-12 (E), and 6MWT (F)
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effects in vitro, and both genetic and pharmacologic 
elimination of senescent cells improves parameters of 
pulmonary and physical function. Importantly, a signifi-
cant increase in P16 expression in the lung tissue biopsies 
of individuals affected by IPF obtained from the LTRC as 
well as from the European IPF registry has been previ-
ously reported and found to be negatively correlated with 
measures of pulmonary function [8, 10]. Collectively, 
these data support the premise that components of the 
SASP could serve as biomarkers of senescent cell burden 
in persons with IPF and be informative of disease status.

The candidate panel of senescence biomarkers we used 
in the current study was based on diverse components 
of the SASP commonly observed in cell-based models of 
senescence or in murine tissues with high senescent cell 
burden consequent to chronological aging or manipu-
lation to induce an aging-related disease. While indi-
vidual components of our biomarker panel are certainly 
not unique to senescent cells, we recently demonstrated 

that most of the cytokines, chemokines, matrix remod-
eling proteins, and growth factors measured herein are 
robustly secreted by a variety of human cell types driven 
to senesce in vitro, and their circulating concentrations 
significantly increase with chronological age in humans, 
consistent with an age-related increase in senescent cell 
burden [14]. An exception is RAGE, which was signifi-
cantly reduced in participants with IPF and, in LASSO 
regression models, emerged as the most important bio-
marker in predicting case status, all three measures 
of pulmonary function (FVC, DLCO, and FEV1), and 
health-related QoL. RAGE is a member of the immuno-
globulin superfamily of receptors highly expressed in the 
lung that exists in a membrane-bound form as well as in 
a soluble form, which acts as a decoy receptor [18]. Con-
sistent with our results, a previous study found reduced 
plasma soluble RAGE in persons with IPF and other ILDs 
and a significant association with disease severity [19]. 
Interestingly, a nuclear isoform of RAGE has been impli-
cated in DNA repair, and RAGE knockout mice develop 
fibrosis and exhibit markers of cellular senescence [20]. 
In the present study, we did not observe an association 
of RAGE with lung tissue expression of P16, although the 
combinatorial signature of biomarkers predicting P16 
lung expression included RAGE. The role of RAGE in the 
pathogenesis of IPF, however, is still not fully understood 
and conflicting results have been reported from murine 
models of lung fibrosis, underscoring the need of addi-
tional studies [18].

The higher expression of P16 in human lung tissue 
with advanced IPF disease severity is paralleled by an 
increase in the expression of several matrix-remodeling 
proteins [8]. MMP7 is a metalloprotease that has been 
implicated in the pathogenesis of pulmonary fibrosis [21]. 
Here, the plasma concentration of MMP7 emerged as an 
important predictor of case status, pulmonary function, 
health-related QoL, and self-reported physical function; 
findings consistent with prior studies supporting MMP7 
as a biomarker for IPF [22–27]. Our data further advance 
this concept by demonstrating a significant association 
between the circulating concentrations of MMP7 and 
lung P16 expression, suggesting a plausible mechanism 
for the elevated abundance of this biomarker in the pres-
ent as well as prior studies.

In addition to RAGE and MMP7, the plasma concen-
trations of activin A, eotaxin, MCP1, MDC, PARC, and 
TARC were also identified as predictors of key disease 
outcomes. Remarkably, like MMP7, levels of activin A, 
eotaxin, MCP1, MDC, and PARC were also significantly 
associated with lung P16 expression and the LASSO 
regression designated activin A as the most important 
predictor. A recent study found increased circulating 
levels of activin A in persons with acute exacerbation of 
IPF compared to those with stable IPF and, similar to our 

Fig. 5 Survival curve for participants affected by idiopathic pulmonary 
fibrosis (IPF, n = 93) (A). Biomarkers associated with risk of death in partici-
pants with IPF identified by univariate Cox models adjusted for age, BMI, 
and sex (B). *p < 0.05 and **p < 0.01
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Fig. 6 Lung P16 gene expression levels in participants affected by idiopathic pulmonary fibrosis (IPF, n = 74) and controls (n = 73) captured through 
microarray analysis and expressed as means ± SD (A); Unadjusted Spearman’s rank correlations plots between lung P16 gene expression and circulating 
levels of activin A (B), GDF15 (C), and MMP7 (D); Biomarkers selected by the LASSO regression analysis to predict lung P16 gene expression (E).***p < 0.001
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study, evidenced a significant negative correlation with 
DLCO [28]. As our data would suggest, the plasma con-
centration of activin A is an important predictor of lung 
senescent cell burden, an interesting future direction 
would be to explore the contribution of senescent cells 
and the SASP to acute IPF exacerbation.

GDF15, a stress-induced cytokine, has emerged as a 
promising biomarker of chronological and biological 
aging and is a component of the SASP [14, 29, 30]. In the 
present study, we observed that plasma concentrations 
of GDF15 were significantly elevated in participants with 
IPF and associated with clinical and patient-centered 
outcomes as well as lung P16 expression. With machine 
learning, GDF15 was most prominent in predicting the 
absence or presence of the disease and, to a lesser extent, 
DLCO and health-related QoL. In line with our find-
ings, a previous study reported increased levels of GDF15 
in the plasma of IPF patients from three independent 
cohorts and evidenced a significative negative correlation 

with DLCO [31]. In addition, higher GDF15 levels were 
recently associated with increased odds of interstitial 
lung abnormalities detected by chest computed tomogra-
phy in two large independent cohorts [32]. Collectively, 
these data support GDF15 as an informative biomarker 
of health in persons with IPF, whether it reflects systemic 
or lung-specific aging.

Of the SASP components studied herein, IL6 is per-
haps the most exhaustively studied in the context of 
aging and chronic disease [33]. Interestingly, circulating 
concentrations of IL6 did not differ between controls and 
participants with IPF. Even so, levels of IL6 were signifi-
cantly associated with the 6MWT and this cytokine was 
selected as the most important predictor by the LASSO 
regression. This is consistent with prior studies of older 
adults that have further demonstrated that IL6 levels 
are informative of the risk of declines in gait speed [15, 
34]. We note high levels of IL6 were previously detected 
in the secretome of senescent fibroblasts in vitro [8, 14] 
and a previous study found that circulating IL6 was sig-
nificantly higher in persons affected by IPF compared 
to controls and that it was an independent predictor of 
DLCO decline [35]. Hence, in conjunction with the bio-
markers discussed above, IL6 may be a useful biomarker 
of physical function and potentially pulmonary function 
in the context of IPF.

In clinical practice, biomarkers can potentially contrib-
ute to the diagnosis and management of IPF. As noted, 
they may reflect disease progression and even exacerba-
tion and thus, guide clinical decision making. Reliable 
and accessible biomarkers of senescent cell burden may 
be also important for use in future clinical trials. There 
is now considerable interest in the development of seno-
therapeutic drugs, which can either eliminate (senolytics) 
or alter the behavior (senomorphics) of senescent cells. 
Pharmacological clearance of senescent cells has been 

Table 3 Unadjusted and Adjusted (for age, sex, and BMI) 
Spearman’s Rank Correlations between a Subset of Circulating 
Biomarkers and Their Lung Gene Expression Levels Captured 
Through Microarray Analysis
Protein Gene 

Symbol
Unad-
justed
r-value

Unad-
justed
p-value

Adjusted
r-value

Ad-
justed
p-value

Activin A INHBA -0.14 0.052 -0.13 0.074

ADAMTS13 ADAMTS13 0.05 0.489 0.05 0.536

Eotaxin CCL11 0.28 < 0.001 0.18 0.017
GDF15 GDF15 0.24 0.001 0.21 0.005
MCP1 CCL2 0.11 0.144 0.10 0.172

MDC CCL22 0.29 < 0.001 0.28 < 0.001
MMP7 MMP7 0.44 < 0.001 0.42 < 0.001
PARC CCL18 0.34 < 0.001 0.30 < 0.001
RAGE AGER 0.38 < 0.001 0.39 < 0.001
TARC CCL17 0.32 < 0.001 0.26 < 0.001

Fig. 7 Lung gene expression levels (individual data points and means) of a subset of biomarkers in participants affected by idiopathic pulmonary fibrosis 
(IPF, n = 95) and controls (n = 85) captured through microarray analysis. ***p < 0.001

 



Page 11 of 13Aversa et al. Respiratory Research          (2023) 24:101 

demonstrated in vitro on both senescent fibroblasts and 
senescent alveolar epithelial cells by using the senolytic 
cocktail of dasatinib (a tyrosine kinase inhibitor) plus 
quercetin, (a flavonol) (DQ) [8, 10]. Consistently, admin-
istration of DQ to mice with bleomycin-induced lung 
fibrosis significantly reduced transcriptional levels of P16 
and several SASP factors in lung tissue and translated 
into improved measures of pulmonary and physical func-
tion in mice [8]. Encouragingly, no adverse events were 
reported in an open label pilot study in which the safety 
of a short duration intermittent treatment with DQ was 
evaluated in 14 participants with IPF [36]. Biomarkers 
offer utility to additional early phase trials as evidence of 
target engagement for optimization of dose and dosing 
regimens. Moreover, in ensuing randomized control tri-
als to ultimately gauge efficacy and safety of senothera-
peutics, biomarkers may be leveraged for the inclusion 
of participants who may be most responsive and serve 
as surrogate endpoints for longer-term outcomes of pri-
mary interest; i.e., FVC and DLCO. Enthusiasm for the 
senescence biomarkers presented here is consequent to 
their associations with disease status, pulmonary func-
tion, and, importantly, a contributing biological mecha-
nism to IPF disease onset and/or progression.

Strengths of the present study include the standardized 
and methodically collected data elements and samples 
provided by the LTRC. The combination of lung tissue 
microarray data, plasma concentrations of senescence 
biomarkers, pulmonary and physical function measures, 
and health-related QoL are distinguishing features of our 
study that advance insights into IPF. We further note our 
observations may be strengthened by the health status 
of the control group, which was adversely influenced by 
smoking history and a higher frequency of lung and other 
cancers than participants with IPF. We also acknowledge 
study limitations. First, we used a pre-defined panel of 
candidate senescence biomarkers not biased toward lung 
disease. This may have limited our ability to capture other 
relevant biomarkers for IPF. Second, the cross-sectional 
nature of the study did not allow to further explore the 
temporal relationship between the circulating concen-
tration of the biomarkers assessed and changes in clini-
cal and patient-centered outcomes. Third, because of the 
unique elements in our data set, particularly access to 
lung tissue samples and data, we did not have a validation 
cohort to check the extent to which the associations and 
models’ predictions hold true in a different population. 
In light of this concern, we did perform cross-validation 
to qualify our primary findings. Fourth, we acknowledge 
that our candidate biomarkers, while informed by diverse 
experimental data, are neither unique nor universal to 
senescent cells. Through the analysis of previously cap-
tured microarray data, however, we observed increased 
lung gene expression of P16 and of several of our top 

candidate senescence biomarkers in IPF participants 
compared to controls, which warrants further research.

In conclusion, our study demonstrates biomark-
ers of cellular senescence, a biological mechanism that 
may contribute to the etiology of IPF, are informa-
tive of disease status, pulmonary and physical function, 
health-related QoL, and mortality risk. Our data sug-
gest senescence biomarkers may be of utility for clini-
cal decision making, clinical research, and future trials 
of senotherapeutic interventions. Additional studies are 
warranted to validate and optimize the combinatorial sig-
natures of biomarkers that emerged here using a machine 
learning approach.
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