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Abstract 

Background  People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Dis-
ease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic 
and transcriptomic disruptions in the airway epithelium.

Methods  Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD − HIV + , 22 COPD + HIV − and 
20 COPD – HIV − subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illu-
mina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi ‘omic integration was performed using 
Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify 
key interactions between the ’omes.

Results  The COPD + HIV −, COPD −HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, 
p = 0.023, and p = 5.5e−06, respectively) compared to individuals with neither COPD nor HIV, with the 
COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different 
between the four groups (p = 0.001). Multi ‘omic integration identified correlations between Bacteroidetes Prevotella, 
genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3.

Conclusion  PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithe-
lial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in 
host genes including FUZ, FASTKD3, and ACVR1B.
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Background
Antiretroviral therapy (ART) has substantially increased 
the lifespan and reduced acquired immunodeficiency 
syndrome-related morbidity and mortality of people liv-
ing with human immunodeficiency virus (PLWH, HIV) 
[1, 2]. The aging of PLWH nonetheless places them 
at higher risk for developing age-related comorbidi-
ties, including chronic obstructive pulmonary disease 
(COPD). PLWH have been shown to have an elevated 
risk for COPD [3–5] which appears to be independent 
of smoking history [3, 6] and also worsens their mortal-
ity risk [7]. As the population of PLWH ages, they are 
likely to bear an increasing burden of COPD.

There are many hypotheses regarding the mecha-
nisms of HIV-associated COPD, including but not 
limited to longer exposure to risky behaviours [8], side 
effects from ART [8, 9], chronic inflammation [10], and 
Pneumocystis colonization [11, 12]. Speculation that 
microbial dysbiosis in the lung, the result of repeated 
pulmonary infections and antibiotic exposure, could 
also drive obstructive lung disease has led to multiple 
studies investigating the lung microbiome in PLWH 
[13–16]. For instance, we previously reported on 
decreased microbial diversity and community shifts in 
the airway epithelium of PLWH compared to HIV-unin-
fected patients [16]. The characterization of the airway 
epithelial microbiome specifically in PLWH with COPD, 
however, has yet to be reported. Moreover, although 
dysbiosis may conceivably lead to profound changes in 
host molecular mechanisms such as transcription, epi-
genetic regulation, metabolism, and immunity, these 
disruptions have not yet been fully described.

In this study, we hypothesize that microbial disrup-
tions in the airway epithelium of PLWH with COPD are 
associated with key transcriptomic and epigenetic altera-
tions that can help us gain insights into the disease patho-
genesis of HIV-associated COPD. We simultaneously 
profile the microbiome, methylome, and transcriptome 
from airway epithelial cells collected via bronchoscopy 
in PLWH with COPD (COPD + HIV +) to (1) character-
ize the distinct microbiome features distinguishing them 
from PLWH without COPD (COPD − HIV +), HIV-unin-
fected patients with COPD (COPD + HIV−), and healthy 
controls (COPD  −  HIV−) and (2) link these features 
with epigenetic and transcriptomic alterations to better 
understand the host response to dysbiosis. To the best of 
our knowledge, no study has integrated and examined all 
three ’omes together in the context of the HIV airway.

Methods
Study population and design
Airway epithelial cell (AEC) brushings were obtained 
from 76 (18 COPD + HIV +, 16 COPD− HIV + , 22 

COPD + HIV− and 20 COPD  –  HIV  −) adult patients 
at St. Paul’s Hospital, Vancouver, BC, who consented to 
undergo bronchoscopic collection of research specimens 
under the University of British Columbia Research Ethics 
Board Certificates H11-02713 and H15-02166. Bronchial 
brushings were obtained according to previously pub-
lished methods [16–18]. Briefly, the bronchoscope was 
guided to either the right or left upper lobe segment and 
a cytology brush was inserted until resistance was met 
(approximately 2 mm in diameter) at which point gentle 
brushings were obtained for AEC collection. PLWH also 
provided background controls for the study, including 
oral washings, reagent controls, bronchoscope channel 
washings, water rinsed over unused cytology brushes, 
and extraction negative samples specifically to inves-
tigate for any cross-contamination with AEC samples. 
COPD was defined based on a pulmonologist’s diagnosis 
of COPD and either a pre-bronchodilator forced expira-
tory volume in one second (FEV1)/forced vital capac-
ity (FVC) ≤ lower limit of normal [19] or clear evidence 
of emphysema on computed tomography imaging on 
visual inspection. PLWH were defined as subjects with 
documented HIV-1 infection. An overview of the study 
design is provided in Additional file 1: Fig. S1. Details of 
the cohort and the methylation and transcriptome pro-
filing of the samples have previously been reported [18]. 
Briefly, methylation profiles were obtained using the Illu-
mina Infinium MethylationEPIC BeadChip microarray, 
which captures the methylation status 863,904 CpG sites 
across the genome. Paired end RNA sequencing was per-
formed to a depth of 50 million reads using the Illumina 
Novaseq6000 platform.

Microbiome profiling
Bacterial genomic DNA was extracted from bronchial 
brushings, and microbiome profiles were obtained using 
touchdown droplet digital polymerase chain reaction, 
followed by 16S amplicon sequencing using the Illumina 
Miseq® platform at the Sequencing and Bioinformatics 
Consortium at the University of British Columbia (Van-
couver, Canada). Sequencing data were processed fol-
lowing the QIIME2™ workflow using Divisive Amplicon 
Denoising Algorithm (DADA2) to denoise sequences. 
During these steps, the sequencing reads were demul-
tiplexed, merged and resolved into amplicon sequence 
variants (ASVs). Further quality filtering steps were per-
formed to remove contaminating host mitochondrial or 
chloroplast sequences, ASVs present in PCR controls, 
ASVs with significantly fewer sequences than the major-
ity, and ASVs present only in one sample (singletons). 
Taxonomy assignment was performed on ASVs using a 
pre-trained naive Bayes classifier artifact trained against 
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Greengenes (138 revision) trimmed to include only 
the V4 hypervariable region and pre-clustered at 99% 
sequence identity. Phylogenetic trees were generated 
using the MAFFT program in QIIME 2™, which was con-
secutively used as input to compute different phyloge-
netic diversity measures.

Alpha diversity was measured using the Shannon 
Diversity Index, a metric of community richness and 
evenness. T-tests were used to identify differences in 
Shannon Diversity between PLWH and HIV-uninfected 
groups and between COPD and non-COPD groups, 
while analysis of variance (ANOVA) and Mann–Whit-
ney U-tests were used to identify differences between 
the COPD-HIV-, COPD + HIV  −, COPD  −HIV + , and 
COPD + HIV + groups. Beta diversity was measured 
using Bray Curtis Dissimilarity, which measures dif-
ferences in richness between two or more communi-
ties, tested with permutational multivariate analysis of 
variance (PERMANOVA) (adonis function in vegan R 
package [20]), and visualized using principal coordinate 
analysis (PCoA) plots. For both alpha and beta diversity, 
a second model was performed to adjust for age, sex, 
and smoking status using the following: Diversity Met-
ric ~ Age + Sex + Smoking Status + COPD/HIV. We also 
examined the interaction effects between COPD and 
HIV on alpha and beta diversity metrics. Average relative 
taxon abundance comparisons were performed between 
the COPD + HIV + , COPD −HIV + , COPD + HIV− and 
COPD −HIV − groups at the phylum and genus levels. 
The Kruskal–Wallis and Dunn’s tests were used to iden-
tify between group differences. Significant taxon differ-
ences were identified at false discover rate (FDR) < 0.05 
using the Benjamini–Hochberg method.

Multi ’omic integration
The microbiome, transcriptome, and methylome were 
integrated using Data Integration Analysis for Bio-
marker discovery using Latent cOmponents (DIABLO) 
implemented in the mixOmics R package. This method 
simultaneously identifies key ’omics features among het-
erogeneous datasets and their respective correlations [21, 
22].

This integration analysis included features from the 
three datasets as input: microbiome (126 ASVs), tran-
scriptome (28 genes) and methylome (4404 CpGs). The 
ASVs were obtained after quality filtering and taxonomy 
assignment steps described above. Top genes and CpG 
sites were selected based on robust linear modeling 
examining the interaction effect of COPD*HIV on gene 
expression and methylation, respectively (further meth-
ods provided in the Additional file 1: Methods). The fol-
lowing design matrix with values ranging between 0 
(indicating no correlation between ’omics datasets) to 

1 (indicating maximum correlation) was chosen, such 
that there was a compromise between correlation and 
discrimination between the features across the different 
datasets.

Subsequently, a DIABLO model with no variable 
selection was fit to evaluate the global performance and 
choose the number of components (ncomp) for the final 
model. The ncomp were chosen with considerations of 
centroids distance measures and the balanced error rates, 
after tenfold cross validation repeated 50 times. Sparse 
partial least squares discriminant analysis was then used 
to obtain the optimal number of variables of each com-
ponent in the three datasets, after tenfold cross valida-
tion repeated 50 times. Using the chosen parameters, 
the final DIABLO models were fit to identify key inter-
actions (using a correlation threshold of |0.7|) between 
the microbiome, methylome and the transcriptome. 
Similar methods were used to integrate just two datasets 
at a time—the (a) microbiome and methylome, and (b) 
microbiome and transcriptome—to identify correlations 
between the corresponding ’omes.

Results
Table 1 provides a summary of participant demographics. 
The study cohort was composed of 76 participants (18 
COPD + HIV + , 16 COPD − HIV + , 22 COPD + HIV −, 
and 20 COPD – HIV −). The mean (standard deviation) 
age was 61.3 ± 11.6 years, with males (n = 48) making up 
63.2% of the total. Of the PLWH (n = 34), 30 (88.2%) were 
receiving ART and 26 (76.5%) had undetectable HIV 
plasma viral  load (< 40 copies/mL), and the mean CD4 
count was 439 cells/mm3.

PLWH with COPD feature reduced airway epithelial 
microbiome diversity and microbial community shifts
There were no significant differences in 16S rRNA gene 
copy levels between the COPD + HIV + , COPD + HIV −, 
COPD  −  -HIV + and COPD  –  HIV  − groups (overall 
Kruskal–Wallis p = 0.300, Additional file 1: Fig. S2). Alpha 
diversity measured using the Shannon Diversity Index is 
represented in Fig.  1A–C. We observed significant dif-
ferences between the (a) COPD + and COPD − groups 
(median[interquartile range] 2.80[1.73] vs. 3.99[1.29]; 
p = 0.003, adjusted p = 0.046), (b) HIV + and HIV  − 
groups (2.66[1.74] vs. 3.83[1.15]; p = 0.002, adjusted 
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p = 0.021), and (c) combined COPD and HIV groups: 
COPD + HIV + , COPD + HIV  −, COPD  −  HIV + and 
COPD  –  HIV − (2.56[1.61] vs. 3.19[1.33] vs. 3.48[1.94] 
vs. 4.13[0.91]; p = 1.5e−04, adjusted p = 0.016). PLWH 
with COPD featured the lowest alpha diversity of the four 
groups. There were no statistically significant differences 
in alpha or beta diversity measures by sex groups.

Beta diversity measured between the COPD  −
HIV  −, COPD + HIV  −, COPD  −HIV + , and 
COPD + HIV + groups are shown in Fig. 1D–F. The prin-
cipal coordinate plots and PERMANOVA analysis show 
that there were significant differences between the resi-
dent microbial communities of the COPD + and COPD − 
groups (p = 0.001, adjusted p = 0.009), HIV + and 
HIV  − groups (p = 0.009, adjusted p = 0.041), and the 
combined COPD and HIV groups (p = 0.001, adjusted 
p = 0.006). Consistent with these findings, smoking status 
was also associated with significant differences in resi-
dent microbial communities (p = 0.037, Additional file 1: 
Fig. S3). There were no significant interaction effects 

between COPD and HIV on alpha and beta diversity 
metrics (Additional file  1: Fig. S4). Removal of patients 
using inhaled corticosteroids (n = 4) did not significantly 
change relationships in alpha and beta diversity (Addi-
tional file 1: Figs. S5, S6).

Relative phyla and genera abundance are shown in 
Fig. 2 and in Additional file 1: Tables S1 and S2. The most 
abundant phylum in airway epithelial cells was Firmi-
cutes, followed by Bacteroidetes and Proteobacteria. At 
the genus level, Prevotella, Veillonella, and Streptococcus 
were the most abundant. COPD − showed higher rela-
tive abundance of phyla Bacteroidetes and Fusobacteria, 
and genera Prevotella, Veillonella, Megasphaera, Neis-
seria, Selenomonas, and Fusobacterium compared to the 
COPD + group. Similarly, the HIV  − group had higher 
abundance of phyla Fusobacteria, and genera Prevotella, 
Neisseria, Selenomonas and Fusobacterium compared 
to the HIV + group. Phyla Fusobacteria and Bacteroi-
detes, and genera Prevotella, Megasphaera, Neisseria, 
Selenomonas and Fusobacterium showed significant 

Table 1  Demographics and clinical features of the study cohort

Quantitative variables are described with the median and interquartile range “()”

*Differences between the groups’ characteristics were tested using Kruskal–Wallis test for continuous variables and a X-squared test for count variables. “Pre” refers to 
spirometry tests before bronchodilator use. Denominators used for the percentages correspond to the total number of individuals in each group

HIV + COPD +  HIV + COPD − HIV − COPD +  HIV − COPD − P*

n 18 16 22 20 –

Age (years) 56 (52–63) 56 (53–61) 69 (64–73) 64 (56–68) 1.02 × 10–03

Females (%) 22 13 45 60 0.01

BMI (kg/m2) 24.06 (19.16–26.68) 26.81 (23.09–27.52) 24 (22.86–29.50) 25.25 (21.4–29.39) 0.17

Smoking status – – – – 1.58 × 10–04

Current (%) 61 19 40 5 –

Former (%) 28 50 55 35 –

Never (%) 5.5 25 5 60 –

Unreported (%) 5.5 6 0 0

Pack-year history 38 (30–49) 4.50 (0.75–23.25) 40 (20–50) 20 (0–30) 2.02 × 10–04

Bronchiectasis (%) 11 25 0 5 –

Asthma (%) 0 25 5 0 –

Pre FEV1% 80.80 (55.55–90.10) 83.00 (78.70–91.50) 70.00 (59.88–78.53) 88.75 (81.50–96.25) 3.47 × 10–03

Pre FEV1/FVC 64.61 (59.06–75.36) 75.00 (71.64–80.59) 63.45 (59.93–69.50) 75.90 (72.85–81.25) 3.46 × 10–06

Undetectable HIV viral load (%) 89 63 – – 0.16

CD4 T cell count (cells/mm3) 450.0 (260.0–510.0) 460.0 (110.0–620.0) – – 0.91

On ART (%) 94 81 – – 0.32

(See figure on next page.)
Fig. 1  Shannon Diversity Index differences between (a) COPD + and COPD− groups, (b) HIV + and HIV− groups, and (c) COPD + HIV + , 
COPD + HIV−, COPD−HIV + and COPD−HIV− groups. The COPD + HIV + group featured the lowest Shannon Diversity Index of all four groups. 
P-values were adjusted for age, sex, and smoking status. Microbial community structures in AECs according to (d) COPD status (COPD− (N): 
red circles; COPD + (Y): blue circles), (e HIV status (HIV− (Negative): red circles; HIV + (Positive): blue circles), and (f) combined COPD + HIV status 
(COPD + HIV +: purple circles; COPD + HIV−: blue circles; COPD-HIV +: green circles; COPD−HIV−: red circles) based on Bray–Curtis distances; the 
centroids for each group are also shown. Permutational multivariate ANOVA (PERMANOVA) was used for comparisons of microbial community 
structures between groups, with adjustment for age, sex, and smoking status
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Fig. 1  (See legend on previous page.)



Page 6 of 12Jude et al. Respiratory Research          (2023) 24:124 

differences between the 4 groups (COPD-HIV-, COPD-
HIV +, COPD + HIV −, and COPD + HIV +). There were 
no individual genera or phyla, however, that were signifi-
cantly correlated with FEV1 percent predicted.

To address possible microbial contamination in AEC 
brushings, oral washings, reagent controls, bronchoscope 
channel washings, water rinsed over unused cytology 

brushes, and extraction negative samples were collected 
from the PLWH group. 16S rRNA gene copies were sig-
nificantly elevated in the AEC brushings and oral wash 
controls compared to the background environmental 
samples (Additional file 1: Fig. S7A). PCA plots demon-
strated that each sample type had a distinct community 

Fig. 2  Average relative taxa abundance comparisons at the phylum level between (a) COPD + and COPD− groups, (b) HIV+ and HIV− groups, and 
(c) COPD + HIV + , COPD + HIV−, COPD−HIV + and COPD−HIV− groups. Average relative taxa abundance comparisons at the genus level between 
(d) COPD + and COPD− groups, (e) HIV + and HIV− groups, and (f) COPD + HIV + , COPD + HIV−, COPD−HIV + and COPD−HIV− groups
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profile (Additional file  1: Fig. S7B, Table  S3), thus sug-
gesting that there was minimal cross-contamination.

Multi ‘omic integration using DIABLO
The microbiome, transcriptome and methylome were 
integrated using DIABLO to identify any ‘between’ and 
‘within’  ’ome correlations based on (a) COPD, (b) HIV 
and (c) COPD*HIV statuses (Additional file  1: Fig. S8). 
The top three ASV-Gene, ASV-CpG and Gene-CpG pairs 
and their respective correlation values are shown in rep-
resentative Table  2. The balanced error rate, used as an 
estimate of model performance, was ∼30–40% in each 
component. Network interactions between the micro-
biome, methylome, and transcriptome for the strongest 
correlations (> 0.75) are shown in Fig. 3. Complete tables 
of pairwise correlations for COPD, HIV, and COPD*HIV 
are provided in Additional files 2, 3, and 4, respectively.

In both our COPD effect and combined COPD*HIV 
effect analyses, we identified Bacteroidetes Prevotella to 
be a top ASV correlated with features of the transcrip-
tome and the epigenome. In the former analysis, Bacte-
roidetes Prevotella was correlated with genes WDR72, 
AKR1C2 and SETDB1, and methylation sites CpG-
TIMP3;SYN3, CpG-UTP11L and CpG-PHACTR2; CpG-
UTP11L was in turn correlated with genes WDR72 and 
AKR1C2, and CpG-TIMP3; SYN3 was correlated with 
gene WDR72. In the COPD*HIV analysis, Bacteroidetes 
Prevotella was correlated with genes FASTKD3, FUZ, 
and ACVR1B, and CpG-FUZ and CpG-PHLDB3.

Discussion
In support of the hypothesis that HIV infection is associ-
ated with alterations in the airway epithelial microbiome, 
our analysis showed several novel conclusions: (1) PLWH 
with COPD had significantly lower microbial diversity 
and a distinct microbial community in their airway epi-
thelium compared to PLWH without COPD, HIV-nega-
tive COPD patients, and patients with neither HIV nor 
COPD; (2) microbial features that appeared disrupted 
in PLWH with COPD were correlated with methylation 
and transcriptomic alterations along genes not previously 
recognized to be part of the pathogenesis of HIV-associ-
ated COPD.

Our analysis of the microbiome revealed that rela-
tively “healthier” individuals were enriched in char-
acteristic phyla Fusobacteria (in COPD −, HIV − and 
COPD  –  HIV  − groups) and Bacteroidetes (in the 
COPD  − and COPD  −HIV  − groups), and that 
decreases in these phyla may be associated with disease. 
However, we found no significant differences in the 
relative abundance of other characteristic phyla Proteo-
bacteria and Firmicutes, contrary to the findings of Sze 

et al. [23], Xu et al.[16], and Ramsheh et al. [24]. Lower 
in the taxonomic hierarchy, we noted differences in 
relative abundance of genera Prevotella, Selenomonas, 
Neisseria, Fusobacterium, Streptococcus and Veillonella 
in the group with both COPD and HIV. These microbes 
are known to be oral commensals and have previously 
been implicated in lower airway colonization and driv-
ing severity of disease in COPD [25–27]. Our results 
reinforce the notion that diversity and composition 
are important components of a “healthy” microbiome 
[28]. However, how exactly lung microbial dysbiosis 
translates to the clinical disease presentations observed 
in patients with HIV and COPD is still unclear. This 
relationship is likely multifactorial, with variations in 

Table 2  Top ASV-Gene, ASV-CpG and Gene-CpG pairs and their 
respective correlation values

(a) COPD effect, (b) HIV effect, and (c) COPD*HIV effect. Correlation cutoff = 0.7

Correlation

(a) COPD effect

 Top ASV-gene pairs

  p Bacteroidetes g Prevotella – WDR72 − 0.797

  p Bacteroidetes g Prevotella – AKR1C2 − 0.765

  p Bacteroidetes g Prevotella – SETDB1 0.761

 Top ASV-CpG pairs

  p Bacteroidetes g Prevotella—CpG TIMP3;SYN3 0.7993

  p Bacteroidetes g Prevotella—CpG UTP11L 0.791

  p Bacteroidetes g Prevotella—CpG PHACTR2 − 0.760

 Top Gene-CpG pairs

  WDR72—CpG TIMP3;SYN3 − 0.799

  WDR72—CpG UTP11L − 0.784

  AKR1C2—CpG UTP11L − 0.775

(b) HIV effect

 Top ASV-CpG pairs

  p Actinobacteria g Scardovia—CpG FGF7 − 0.811

  p Proteobacteria—CpG ABCF3 − 0.706

  p Planctomycetes g Planctomyces—CpG ABCF3 − 0.706

(c) COPD*HIV Effect

 Top ASV-gene pairs

  p Bacteroidetes g Prevotella—FUZ 0.774

  p Bacteroidetes g Prevotella—FASTKD3 − 0.747

  p Bacteroidetes g Prevotella—ACVR1B 0.747

 Top ASV-CpG pairs

  p Bacteroidetes g Prevotella—CpG FUZ − 0.785

  p Bacteroidetes g Prevotella—CpG RP11-168P8.7 0.715

  p Bacteroidetes g Prevotella—CpG PHLDB3 − 0.707

 Top Gene-CpG pairs

  WDR72—CpG FUZ − 0.819

  WDR72—CpG FUZ − 0.800

  AKR1C2—CpG FUZ − 0.793
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Fig. 3  Network visualization of correlations between the microbiome, methylome and transcriptome in (a) COPD, (b) HIV, and (c) COPD*HIV 
analyses. Nodes represent multiomic features (ASVs—Pink triangle, CpGs—Purple circle, and genes—Yellow square), and edges connecting any two 
nodes corresponds to their correlation (Positive correlation—Green; Negative correlation—Red). Correlation cutoff = 0.75
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host processes such as transcription, metabolism, and 
immunity contributing to a certain extent.

In light of this uncertainty, we carried out multi ‘omic 
integration to effectively combine information from three 
‘omes (microbiome, methylome and transcriptome) and 
identified highly correlated ‘omic features that may be 
relevant in the combined COPD and HIV states. Our 
integrative analyses consistently identified the single 
microbiome feature Bacteroidetes Prevotella, reduced 
in relative abundance in PLWH with COPD. Although 
a widely studied microbe, the exact role of Prevotella in 
the respiratory system is still poorly understood. Cer-
tain pathobiontic strains have been implicated as pro-
moters of subclinical inflammation, particularly through 
increased Th-17 cytokine expression [29]. Twigg et  al.
observed that long-term ART use (> 3  years), which 
would normally be associated with a “healthier” phe-
notype, was associated with decreased Prevotella abun-
dance in nine PLWH [14]. On the other hand, Prevotella 
has also been described in terms of healthy microbial 
ecosystems. Within HIV-uninfected patients with COPD, 
airway epithelial abundance of Prevotella has been asso-
ciated with increased lung function, reduced dyspnea 
scores and inflammation, and expression of epithelial 
genes involved in tight junction promotion [24]. Many 
of these properties of Prevotella may be due to its inter-
actions with other microbes and its dynamic role within 
the respiratory ecosystem. Recent studies have shown 
that Prevotella may exert its anti-inflammatory effects by 
inhibiting cytokine production by other gram-negative 
bacteria like Haemophilus influenzae or may co-aggre-
gate and form heterotrophic biofilms with microbes like 
Porphyromonas [30, 31]. Future research based on cell 
culture models can help determine the strain-specific 
phenotypic response of the host.

The power of multi ‘omics integration allows for greater 
insight into what impact microbial dysbiosis might have 
on the host airway response. For instance, Bacteroi-
detes Prevotella was highly correlated with the meth-
ylation and expression of specific genes in the COPD 
and COPD*HIV interaction effect multi ‘omic analyses. 
Moreover, we found that in PLWH with COPD, reduced 
Prevotella abundance was correlated with the increased 
methylation of CpG sites along the genes PHLDB3 and 
FUZ, and the decreased expression of gene FUZ and the 
increased expression of gene FASTKD3. The consistent 
appearance of FUZ in relation to Prevotella abundance 
in our multi ‘omic integration analyses suggests a strong 
relationship between these two features along both epi-
genetic and transcription pathways. FUZ encodes a 
planar cell polarity protein that plays a prominent role 
in ciliogenesis [32]. Within the lung, higher methyla-
tion and lower expression of FUZ has previously been 

associated with tumour promotion and poor prognosis 
in lung adenocarcinoma [33], a compelling finding given 
the known increased rate of lung cancer in PLWH [34]. 
In our analysis, FUZ expression was also positively corre-
lated ACVR1B and PTPRF and inversely correlated with 
FASTKD3. ACVR1B, part of the transforming growth fac-
tor-beta family, has established associations with COPD 
pathogenesis, as an identified expression quantitative 
trait loci in COPD blood, sputum, and lung [35, 36] and 
as a causal gene in emphysema distribution [37]. While 
the associations of PTPRF and FASTKD3 with COPD 
are not as clear, links between these two genes and lung 
cancer prognosis [38, 39] suggest some degree of activ-
ity within the lung through their roles in apoptosis, cell 
growth and differentiation, and oncogenesis. Interest-
ingly, PTPRF has been noted to have a role in regulating 
the assembly and contraction of actin and actomyosin, 
and formation of tight junctions, with potential barrier 
function against HIV entry into target cells [40]. Whether 
modulation of Prevotella abundance within the airway 
epithelium can subsequently affect the activity of these 
downstream genes in PLWH with COPD is unknown, 
but may be a worthy area for future study.

Although this study is one of the largest to evaluate the 
airway epithelial microbiome in HIV-associated COPD, 
it has several limitations. We showed that microbial dis-
ruptions are evident in the airways of PLWH with COPD, 
however this study was not designed to prove causation 
of airway injury. Future experimentation using cell cul-
ture models or germ-free animals mimicking HIV infec-
tion may provide greater insight into the direction of the 
microbe-gene relationships identified in this study. Sec-
ond, since the majority of our cohort were receiving ART 
and had undetectable HIV plasma viral loads, these results 
may not reflect microbiome and gene changes observed 
in PLWH not on ART. Third, we collected brushings 
from only one upper lobe lung segment per patient and 
acknowledge that there may be regional variation in the 
microbiome which we would not have been able to detect. 
Fourth, we did not have independently verified records of 
the cohort’s previous exacerbation and antibiotic use his-
tory. Fifth, there were demographic differences between 
our study groups and future studies with greater numbers 
of female PLWH would be welcomed. Greater balance 
of concurrent asthma and bronchiectasis, as well as of 
lung function amongst the COPD subgroups, would also 
be beneficial. Finally, while a promising field to uncover 
novel biologic relationships, multi ‘omic integration 
brings further challenges. Different ‘omics datasets are 
often generated via varied technologies and platforms and 
the search for a “gold-standard” workflow for data filter-
ing, normalization, and integration continues [21]. “Over-
fitting” the data in these workflows is often a concern 
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which can cause the predictive performance to suffer in 
other cohorts. Future work using a validation dataset can 
improve these shortcomings and provide better assurance 
of model performance [41].

Conclusions
In this study, we are able to demonstrate that multi 
‘omics integration can yield new insights into the impact 
microbial dysbiosis can have in the airway epithelium 
of PLWH, identifying novel genes in the pathogenesis 
of HIV-associated COPD. These genes could be further 
explored as potential biomarkers or drug targets specific 
to PLWH.
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