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Abstract
Background Congenital pulmonary airway malformation (CPAM) is the most frequent pulmonary developmental 
malformation and the pathophysiology remains poorly understood. This study aimed to identify the characteristic 
gene expression patterns and the marker genes essential to CPAM.

Methods Tissues from the cystic area displaying CPAM and the area of normal appearance were obtained during 
surgery. Bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) were performed for integrating 
analysis. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify specifically expressed 
genes to CPAM.

Results In total, 2074 genes were significantly differentially expressed between the CPAM and control areas. Of these 
differentially expressed genes (DEGs), 1675 genes were up-regulated and 399 genes were down-regulated. Gene 
ontology analysis revealed these DEGs were specifically enriched in ciliated epithelium and involved in immune 
response. We also identified several CPAM-related modules by iWGCNA, among them, P15_I4_M3 module was the 
most influential module for distinguishing CPAMs from controls. By combining the analysis of the expression dataset 
from RNA-seq and scRNA-seq, SPOCK2, STX11, and ZNF331 were highlighted in CPAM.

Conclusions Through our analysis of expression datasets from both scRNA-seq and bulk RNA-seq of tissues obtained 
from patients with CPAM, we identified the characteristic gene expression patterns associated with the condition. 
Our findings suggest that SPOCK2 could be a potential biomarker gene for the diagnosis and therapeutic target in 
the development of CPAM, whereas STX11 and ZNF331 might serve as prognostic markers for this condition. Further 
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Background
Congenital pulmonary airway malformation (CPAM) is a 
rare pulmonary developmental malformation character-
ized by the presence of multiple cysts within lung paren-
chyma due to excessive proliferation and expansion of 
terminal bronchioles [1]. The incidence of CPAM is 0.94 
per 10,000 to 4 per 10,000 births over the last years [2, 3], 
accounting for about 25% of all congenital lung lesions. 
The majority of CPAMs can be antenatally diagnosed by 
ultrasound screening and persist postnatally. The clinical 
manifestations are variable, which can be asymptomatic 
or be with respiratory distress or acute infection after 
birth. Surgical resection is the primary treatment for 
CPAM due to the risk of recurrent pneumonia and con-
cern for malignant transformation [4–6].

The pathogenesis of CPAM is still unclear. It is thought 
to be the disturbance of the interaction between the epi-
thelium and the underlying mesenchyme during lung 
development, resulting in an overgrowth of mesenchymal 
cells and decreased apoptosis, consequently forming the 
multicystic lung mass [1, 7]. Altered expression of factors 
such as fibroblast growth factors [8, 9], TGF-beta signal-
ing [10], or transcription factors [11–13] were observed 
in the epithelial cells of the cysts in CPAM, indicating the 
involvement of these genes in CPAM.

However, because of the complex pathophysiology and 
cell heterogeneity in lung tissues, a comprehensive profile 
of mRNA expression in different cell types of CPAM is 
necessary [14]. Bulk mRNA analysis measures the aver-
age gene expression levels in a population of cells and 
may not reflect the complexity and heterogeneity of cells 
of disease. Single-cell RNA sequencing (scRNA-seq) 
technology facilitate the dissection of the hidden het-
erogeneity in cell populations [15] and offer opportuni-
ties to transfer gene signature from scRNA-seq to bulk 
data [16]. Here in this study, we performed an integrated 
analysis of scRNA-seq and bulk RNA-seq of tissues from 
patients with CPAM to identify the characteristic gene 
expression patterns and the marker genes essential to 
CPAM.

Methods
Subjects
Patients with CPAM were recruited from the Children’s 
Hospital, Zhejiang University School of Medicine. All 
patients included for analysis were excluded with infec-
tion at the time of surgery. The diagnosis and the classi-
fication of CPAM was confirmed by histological analysis 

after surgical resection according to the Stocker classifi-
cation [17]. For each CPAM patient, we collected tissues 
from the cystic area and the area of normal appearance 
surrounding the lesion as a simply control. The samples 
were snap-frozen and kept in liquid nitrogen for storage 
at -80 ℃ before RNA extraction.

RNA sequencing
Total RNA was extracted from frozen lung tissues of 
CPAM using TRIzolR Reagent (Invitrogen). Four micro-
grams of total RNA were used for cDNA sequencing 
library generation using NEBNext UltraTM RNA Library 
Prep Kit (NEB, USA). The purified products were evalu-
ated with an Agilent Bioanalyzer (Agilent Technologies). 
Eligible libraries were sequenced on Illumina HiSeq 2000 
platform 100-bp paired-end reads.

The original fastq data were evaluated and Low-quality 
reads were filtered by the Trimmomatic tool [18]. The 
filtered clean reads were aligned to the human reference 
genome (GRCh38) using Hisat2[19]. Only protein-coding 
genes were kept for analysis and genes with no mapped 
reads in at least half of the samples were filtered out. 
Gene expression levels were quantified with raw counts 
(FPKM) by StringTie [20].

Differential expression analysis
Differentially expressed genes (DEGs) between cysts and 
simply controls were identified using the DESeq2 pack-
age in R [21]. DEGs were selected based on the thresh-
olds of both the P value < 0.01 and fold change (FC) > 2. 
DEGs were visualized by volcano plot. A principal com-
ponent analysis (PCA) was performed to detect the over-
all differences between the individual samples using the 
normalized counts of all genes.

Functional enrichment and protein-protein interaction 
network analysis
To assess the functions of the DEGs identified in CPAM, 
Gene Ontology (GO) enrichment analysis was performed 
using the clusterProfiler package [22] with the up-reg-
ulated genes and down-regulated genes, respectively. 
GO terms with FDR < 0.05 were considered a significant 
event.

Protein-Protein Interaction (PPI) data were down-
loaded from the STRING database to investigate protein 
interactions among the DEGs enriched in the significant 
GO terms, the interactions with a PPI score > 500 were 

investigations with larger samples and function studies are necessary to confirm the involvement of these genes in 
CPAM.
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retained for further analysis, and the PPI network was 
visualized by Cytoscape software [23, 24].

Discovering the influential gene modules in distinguishing 
CPAM from simply control
Iterative weighted gene correlation network analysis 
(iWGCNA) (https://github.com/cstoeckert/iterativeW-
GCNA), which is a gene network analysis based on cor-
relation to identify highly co-expressed clusters of genes 
(modules) within whole-transcriptome datasets, was 
performed to identify specifically expressed genes to 
CPAM. Genes were grouped into modules and ordered 
by randomForest package and the mean decrease Gini 
index in iWGCNA. For each gene module, the difference 
of eigengenes between CPAMs and simply controls was 
compared by Wilcoxon test. The correlation coefficients 
between each module eigengene and clinical characteris-
tics were also calculated.

Single-cell RNA-seq (scRNA-seq) data analysis
scRNA-seq data was obtained from Zhang’s published 
paper, and was analyzed with Seurat (https://github.com/
satijalab/seurat) [25]. Cells with < 200 or > 2500 genes 
and mitochondrial gene fragments > 20% were filtered. 
The remaining cells were merged into one gene expres-
sion count matrix, and the count data were normalized 
and scaled using Seurat’s functions of NormalizeData() 
and ScaleData(). Dimension reduction and clusters iden-
tification of cells were implemented by RunTSNE() and 
Findclusters() functions. Furthermore, marker genes of 
each cluster (defined as expressed in more than 25% of 
cells in each cluster) were identified by the FindAllMark-
ers() function and different cell clusters were annotated 
by the singleR package [26].

In each cluster, we calculated the average Z-score of 
marker genes and we defined these values as the clus-
ter signatures. Differences in cluster signature between 
CPAM and simply control were tested by the Wilcoxon 
test. P-value threshold was set as 0.05.

Real-time PCR
We performed experimental validation of the expres-
sion of SPOCK2 in another 6 cDNA samples of CPAM 
and simply controls by using quantitative PCR (qPCR). 
The PCR primers were designed for the coding region of 
SPOCK2 and synthesized by Ykang (Hangzhou, China). 
All qPCR reactions were performed in a total of 10 mL 
volume, comprising 5 mL 2× SYBR Green I Master Mix 
(Promega), 1 mL 10 nM of each primer, and 2 mL of 1:20 
diluted cDNA in 96-well plates with QuantStudio™ 7 
Flex (Applied Biosystems). All reactions were performed 
in triplicate, and the conditions were 5 min at 95 °C and 
then 40 cycles of 95 °C at 15 s and 60 °C at 30 s. The rela-
tive expression was calculated via the standard curve 

method relative to the GAPDH housekeeping gene. We 
used five-serial 4-fold dilutions of cDNA samples to con-
struct the standard curves for SPOCK2 and GAPDH.

Results
Altered gene expression during the development of CPAM 
in RNA-seq
Five patients with type 1 and five patients with type 2 
CPAM were recruited and their clinical characteristics 
were shown in Additional file 1: Table S1. The median age 
at surgery of the seven patients was 9 months. A total of 
380 million reads were generated from the 17 transcrip-
tome sequencing data. On average, 97% of reads were 
mapped to the human reference genome. PCA of gene 
expression profile showed that CPAM samples appar-
ently separated from the simply controls (Fig. 1A). Addi-
tionally, we compared the expression of type 1 CPAM 
and type 2 CPAM to identify the DEGs. Our analysis 
revealed a total of 4 upregulated genes and 9 downregu-
lated genes between the two types (Additional file 7: Fig 
S1). We thus consolidated all the CPAM samples to com-
pare them against the control group. We identified 2074 
DEGs between CPAM areas and the paired control areas 
(Fig.  1B). Of these, 1675 DEGs were up-regulated and 
399 DEGs were down-regulated (Fig. 1C, Additional file 
2: Table S2). The heatmap of the top 50 DEGs with up-
regulated and 50 DEGs with down-regulated were shown 
in Fig. 1D.

Gene ontology analysis and key network identification of 
DEGs
GO analysis showed that the up-regulated genes 
were markedly enriched in some biological pro-
cesses such as cilium organization (FDR = 1.80 × 10− 49), 
cilium movement (FDR = 8.49 × 10− 45), epithe-
lial cilium movement involved in extracellular fluid 
movement (FDR = 4.94 × 10− 23), phagocytosis, rec-
ognition (FDR = 5.14 × 10− 21) and humoral immune 
response mediated by circulating immunoglobulin 
(FDR = 5.85 × 10− 21) (Fig.  2A, Additional file 3: Table 
S3a). Down-regulated genes were mainly enriched in the 
biological processes of positive regulation of response 
to external stimulus (FDR = 8.38 × 10 − 8), positive reg-
ulation of defense response or cytokine production 
(FDR = 1.28 × 10 − 7, FDR = 1.64 × 10 − 7), leukocyte migra-
tion (FDR = 6.61 × 10 − 7), and regulation of inflammatory 
response (FDR = 8.99 × 10 − 7) (FDR = 1.12 × 10− 4) (Fig. 2B, 
Additional file 3: Table S3b). The GO enrichment based 
on molecular function also confirmed the DEGs were 
mainly involved in microtubule motor and immune fac-
tor activities (Additional file 4: Table S4). Genes were sig-
nificantly associated with the components of cilium and 
granule epithelial cells (Additional file 5: Table S5).

https://github.com/cstoeckert/iterativeWGCNA
https://github.com/cstoeckert/iterativeWGCNA
https://github.com/satijalab/seurat
https://github.com/satijalab/seurat
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A total of 747 DEGs were filtered into the PPI network 
with the PPI score ranging from 500 to 999, containing 
492 nodes and 765 edges (Fig. 2C). Among them, BMP2, 
TNF, DNAI1, DNAI2, and DNAH5, have a relatively 
higher degree and betweenness centrality, which inter-
acted strongly with other genes.

Refinement of influential gene modules identifies CPAM-
associated transcriptomic signals
A total of 171 modules were identified and ordered by 
iWGCNA. The top 10 crucial modules to CPAM were 
listed in Fig. 3A (Additional file 6: Table S6). The eigen-
gene of the P15_I4_M3 module (P15_I4_M3 ME) was 
specifically lower in CPAMs than in simply controls 
(Fig. 3B, P = 2.1 × 10− 4).

In addition, we investigated the correlation between 
the top 10 ranked gene modules and the clinical charac-
teristics of subjects (Fig. 3C). Intriguingly, all of the mod-
ules mentioned above significantly correlated with the 
existence of CPAM. As a consequence, the top 10 gene 
modules for distinguishing CPAMs from simply controls 

were defined as the ‘CPAM-related module’. Further-
more, the correlation coefficient of modules P15_I4_M3, 
P1_I60_M11, and P6_I8_M3 are greater than 0.8. We 
thus used these three modules for further integrative 
analysis. However, these modules were independent of 
age, sex, disease duration, site of pathological position, 
and subtype. Most importantly, by inter-modular cor-
relation analysis, these highly ranked modules strongly 
correlated with each other and consisted a cluster on the 
network (Fig. 3D).

Integrative analysis of scRNA-seq data from CPAM patient
To validate the completeness of our RNA-seq data and 
investigate more specific details of CPAM, we performed 
the integrative analysis with CPAM scRNA-seq data. 
We observed a great consistency between bulk RNA-seq 
data and scRNA-seq data of CPAM in gene expression 
(Fig. 4A, correlation coefficient (R) = 0.84, P < 2.2 × 10− 16). 
After quality control, a total of 14,814 cells were used for 
downstream analysis. Unsupervised clustering analysis 
displayed that these cells were divided into 26 distinct 

Fig. 1 Identification of DEGs between CPAM and control samples by transcriptome sequencings. (A) Discrimination of CPAM to control by Prin-
cipal Component Analysis (PCA) in RNA-seq expression profiles. Samples of CPAM and control were colored in blue and orange dots, respectively. (B) 
Volcano plot representation of DEGs between CPAM and control. Each point in the plot indicated one gene, vertical lines refer to 2-fold change and the 
horizontal line corresponds to P-value of 0.05. (C) The number of significantly up-regulated and down-regulated genes (FDR < 0.05 and a log2 FC > 1 or 
log2 FC < -1) were illustrated by yellow and gray bars, respectively. (D) Heatmap of the most DEGs in CPAM and control samples. Top 50 up-regulated or 
down-regulated genes between CPAM and control were shown
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clusters corresponding to 9 cell types, including Mono-
cytes, Epithelial cells, B-cells, CD8 + T-cells, and Endo-
thelial cells, Fibroblasts, Macrophages, Neutrophils, and 
NK cells (Fig.  4B). Differentially gene expression analy-
sis was utilized to determine cell type specific marker 
genes. We identified 1430 marker genes in monocytes, 
1176 marker genes in macrophages, 995 marker genes in 
endothelial cells, and 981 marker genes in epithelial cells 
(Fig. 4C).

Epithelial cells were the main cell type of bronchi 
and alveoli. So, we focused on epithelial cells for fur-
ther analysis. We found the signature score of epithelial 
cells was significantly lower in cystic areas than in con-
trol areas of CPAM (Fig.  4D, P = 9.6 × 10− 3). When we 

compared the genes from the three methods, we found 
32 overlaps between the DEGs and the CPAM-related 
module genes, 37 gene-overlaps between the DEGs and 
the marker genes of epithelial cells, and 11 overlapping 
genes between the marker genes of epithelial cells and 
the CPAM-related module genes (Fig. 4E). By integrating 
all the data, we found that SPOCK2, ZNF331, and STX11 
were the only overlapped genes (Fig. 4E). All three genes 
were with decreased expression in cystic area (Additional 
file 8, Fig S2).

The qPCR validated the decreased expression of 
SPOCK2 in CPAM tissues (Additional file 9: Fig. S3). We 
further investigated the expression of SPOCK2 in epi-
thelial subtypes of ciliated cells, alveolar type 1 (AT1), 

Fig. 2 Functional analysis of differentially expressed genes. (A, B) Gene Ontology (GO) enrichment of up-regulated and down-regulated genes in 
CPAMs and controls, only the top 15 significant terms were displayed. The size of the dot indicates the value of FDR, and the color of the dot indicates the 
number of up or down regulated genes enriched in that pathway. (C) PPI network of DEGs. The nodes represent genes. The size of nodes indicates the 
number of connections. The edges denote the interactions between two genes, and the width of an edge denotes the score of the interaction
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Fig. 3 Determining gene modules that are influential in distinguishing CPAM from control. (A) Top 10 modules were listed according to the order 
of mean decrease Gini index for the discrimination of CPAMs. Error bars represent standard deviations of declines in the Gini index, which were calculated 
100 times in the analysis. (B) P15_I4_M3 module eigengene (ME) in samples of CPAM and control. (Wilcoxon test, P = 2.1 × 10− 4). (C) Correlation between 
top 10 eigengene module expression and clinical parameters. Labels in each box indicate correlation coefficients, only P values that are significant are 
displayed by *. ‘***’ represented the P < 0.001, while ‘**’ represented the P < 0.01. (D) Correlation network of top 10 modules. The size and color of the dots 
show the Pearson’s correlation coefficient

 



Page 7 of 10Tan et al. Respiratory Research          (2023) 24:127 

alveolar type 2 (AT2), club cells, and basal cells based on 
the scRNA-seq data [27]. No expression was detected in 
basal cells, but a relatively higher expression of SPOCK2 
was found in AT1 cells than in other cell types. Further-
more, SPOCK2 expression was significantly decreased in 
CPAM sample compared to the simply control sample in 
AT1 cell type (Fig. 4F, P = 4.87 × 10− 8).

Discussion
In this work, we identified a transcriptomic change in 
10 cystic areas and their paired control areas of CPAM 
patients. DEGs between CPAM and simply control tis-
sues were observed in previous transcriptomic stud-
ies [10, 28]. Decreased expression of fatty acid binding 
protein-7 (FABP-7) at both RNA and protein levels was 
found in fetal CPAM tissues compared with fetal con-
trol lungs based on a microarray analysis. However, in 
the same study, although FABP-7 expression was under-
expressed, no significant difference was investigated 
between postnatal CPAMs and simply controls [28], 
which is consistent with our results. It is not supervised 
since FABP-7 was expressed in mesenchymal cells of the 

fetal lung at gestation but not in postnatal or adult lung 
tissues [28]. All of our samples are postnatal lung tissues. 
In another transcriptomic analysis of the epithelium of 
macrocytic lung malformations, TGFBR1 and TGFB2 
were indicated for CPAM pathogenesis [10]. However, 
we didn’t observe the dysregulation of TGF beta signal-
ing in our epithelial cells. The heterogeneous of samples 
used between these two studies may explain the conflict 
results.

Abnormal epithelial cell differentiation was indicated 
during lung development and resulted in the forma-
tion of lung mass [1]. Consistent with that, both our GO 
analysis and the results from a previous transcriptome 
study suggested the top upregulated transcripts in CPAM 
were highly enriched in airway epithelium, specifically 
in ciliated epithelium [29]. Furthermore, the strongest 
interacted genes from our PPI data were primary ciliary 
dyskinesia-related genes DNAI1, DNAI2, and DNAH5 
[30], suggesting the role of cilia in CPAM. Evidence 
showed that primary cilia could transduce and regulate 
sonic hedgehog (SHH) signaling which was required for 
embryonic lung development [31]. While deregulated 

Fig. 4 scRNA-seq analysis of CPAM and its overlap with bulk RNA-seq analysis. (A) Gene expression profiles from bulk RNA-seq and scRNA-seq 
were averaged and plotted on x and y axes, respectively. Correlation coefficient was calculated by Pearson’s test (R = 0.84, P < 2.2 × 10− 16). (B) t-SNE plot of 
cells from CPAM indicates distinct clusters predominantly determined by cell type. (C) The number of marker gene in 9 clusters. (D) Difference between 
samples of CPAM and control in epithelial cell signature score. (E) Venn diagram shows the intersection of epithelial cell marker genes, CPAM differentially 
expressed genes and iWGCNA CPAM-related module genes. (F) Expression levels of SPOCK2 in proliferate subtypes of epithelial cells. ‘***’ represented the 
P < 0.001. AT1, alveolar type 1 cells; AT2, alveolar type 2 cells
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SHH signaling was thought to be the pathogenesis of 
lung cystic abnormalities [32]. Of note, pseudotime tra-
jectory analysis from scRNA-seq revealed that epithelial 
subtypes of ciliated cells, AT1 and AT2 originated from 
the club and basal cells and were at the end of pseudo-
time [27]. Our CPAM tissues and their paired simply 
controls were with the postnatal collection. Therefore, 
the DEGs enriched in ciliated epithelium from our bulk 
RNA-seq data might be the biomarkers of the conse-
quence of the initial molecular dysregulation, rather than 
the triggering event in the lung cysts development [10]. 
More mechanism studies are necessary to discover the 
pathogenesis of CPAM. The DEGs were also significantly 
enriched in immune-related functions and inflammatory 
responses, suggesting the importance of the inflamma-
tory process in CPAM. Indeed, inflammation is not rare 
in patients with CPAM, even in asymptomatic babies 
[33]. Histologic signs of inflammation or inflammation 
cells could be detected as an early feature of CPAM in the 
first few days of life without infection [34]. Our enrich-
ment of DEGs in inflammatory response confirmed that 
malformation of the lung rather than infection induced 
the inflammatory reaction [34].

By integrating the datasets from bulk RNAseq, scRNA-
seq, and iWGCNA, we highlighted SPOCK2, STX11, and 
ZNF331 as candidate genes for CPAM. SPOCK2 is one 
member of the testican group of extracellular chondroitin 
and heparin sulfate proteoglycans (HSPG). It is expressed 
in lung development and significantly increased during 
alveolarization [35]. Decreased expression of SPOCK2 
in epithelial cells may interrupt the balance of mesen-
chymal-epithelial interaction during alveolarization 
[36], consequently resulting in lung malformation. An 
in vitro study suggested a high expression and regula-
tion role of SPOCK2 in the transdifferentiation from 
AT2 to AT1 [37], consistent with our scRNA-seq data of 
higher expression of SPOCK2 in AT1 cells. Upregulation 
of SPOCK2 can decrease the matrix metalloproteinases 
(MMPs) expression and activation [38], while MMPs are 
known as zinc-dependent proteolytic enzymes to regu-
late extracellular matrix (ECM) turnover and involve 
in various pulmonary pathologies [39]. A recent study 
showed higher activity of MMP-9 in mice models with 
CPAM [40]. Our data suggested a significant decreased 
expression of SPOCK2 in CPAM especially in AT1 cells. 
All of the evidence indicates the decreased expression 
of SPOCK2 may contribute to the activation of MMP-9 
in CPAM, suggesting a possible role of SPOCK2 in the 
development of CPAM. SPOCK2 could be a potential 
early diagnostic marker by detecting its expression, and 
therapeutic target for the preventing the pulmonary 
pathologies involving MMPs through up-regulating the 
expression.

STX11 is expressed at lower levels in the cystic area 
of CPAM and is known to be involved in intracellular 
vesicle trafficking and fusion. While current literatures 
do not show a clear correlation between STX11 and lung 
development. But it is predominantly expressed in tissues 
of immune system [41]. Patients with mutated STX11 
gene result in loss of immune homeostasis and severe 
phenotypes of hyperinflammation, such as prolonged 
fever, hepatosplenomegaly, and hemophagocytosis [42]. 
As patients with CPAM are at high risk of persistent 
cough or recurrent lung infection [43], GO enrichment 
of DEG also show the dysregulation of inflammation in 
CPAM. These findings suggest the possibility of involve-
ment of STX11 in immune regulation in CPAM. It could 
be a possible therapeutic target to release the high risk of 
infections in CPAM patients. However, further experi-
ments are needed to investigate the immune functions of 
STX11 in CPAM.

ZNF331 is a zinc finger transcriptional repressor [44]. 
Studies have shown that the promoter region of ZNF331 
is frequently methylated and serve as a poor prognostic 
marker for several types of cancers [45, 46]. While there 
is limited data on the association of ZNF331 and lung 
development, one of the most concerns with CPAM is 
the risk of malignant transformation [47]. Therefore, it 
would be valuable to investigate the methylation status of 
ZNF331 in cystic area of CPAM to see if it could monitor 
the progression of CPAM towards malignancy.

Conclusions
In summary, we performed a global transcriptome analy-
sis by RNA-sequencing and obtained a bunch of differ-
ently expressed genes and gene modules that may be 
essential for the development of CPAM. By integrating 
the analysis of the expression datasets from RNA-seq 
and scRNA-seq, we have identified SPOCK2, STX11, 
and ZNF331 as promising candidate genes for further 
investigation. These genes may have potential diagnostic, 
therapeutic, prognostic biomarkers for CPAM. However, 
the small sample size and lack of detailed analysis of dis-
ease type limit our in-depth exploration of the etiology 
of CPAM. Replications and function assays are required 
to elucidate the molecular mechanisms of SPOCK2 in 
CPAM.
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