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Abstract
Background Chronic obstructive pulmonary disease (COPD) is a significant public health problem characterized 
by persistent airflow limitation. Despite previous research into the pathogenesis of COPD, a comprehensive 
understanding of the cell-type-specific mechanisms in COPD remains lacking. Recent studies have implicated Rab 
GTPases in regulating chronic immune response and inflammation via multiple pathways. In this study, the molecular 
regulating mechanism of RAB32 in COPD was investigated by multiple bioinformatics mining and experimental 
verification.

Methods We collected lung tissue surgical specimens from Zhongshan Hospital, Fudan University, and RT-qPCR and 
western blotting were used to detect the expression of Rabs in COPD lung tissues. Four COPD microarray datasets 
from the Gene Expression Omnibus (GEO) were analyzed. COPD-related epithelial cell scRNA-seq data was obtained 
from the GSE173896 dataset. Weighted gene co-expression network analysis (WGCNA), mfuzz cluster, and Spearman 
correlation analysis were combined to obtain the regulatory network of RAB32 in COPD. The slingshot algorithm 
was used to identify the regulatory molecule, and the co-localization of RAB32 and GPRC5A was observed with 
immunofluorescence.

Results WGCNA identified 771 key module genes significantly associated with the occurrence of COPD, including 
five Rab genes. RAB32 was up-regulated in lung tissues from subjects with COPD as contrast to those without COPD 
on both mRNA and protein levels. Integrating the results of WGCNA, Mfuzz clusters, and Spearman analysis, nine 
potential interacting genes with RAB32 were identified. Among these genes, GPRC5A exhibited a similar molecular 
expression pattern to RAB32. Co-expression density analysis at the cell level demonstrated that the co-expression 
density of RAB32 and GPRC5A was higher in type I alveolar epithelial cells (AT1s) than in type II alveolar epithelial 
cells (AT2s). The immunofluorescence also confirmed the co-localization of RAB32 and GPRC5A, and the Pearson 
correlation analysis found the relationship between RAB32 and GPRC5A was significantly stronger in the COPD lungs 
(r = 0.65) compared to the non-COPD lungs (r = 0.33).

Conclusions Our study marked endeavor to delineate the molecular regulatory axis of RAB32 in COPD by employing 
diverse methods and identifying GPRC5A as a potential interacting molecule with RAB32. These findings offered novel 
perspectives on the mechanism of COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a 
complex, heterogeneous lung disease characterized by 
persistent airflow limitation with chronic inflammation 
[1, 2]. With 10% of the global population affected, COPD 
is a significant public health problem [3]. In accordance 
with the World Health Organization, COPD-related 
deaths are rising consistently, even predicted to become 
the third leading cause of death worldwide by 2030 [4]. 
Comprehensive transcriptome analysis and genome-
wide association studies (GWAS) using integrated mouse 
models or large human lung tissue datasets have provided 
a greater understanding of the mechanisms underlying 
the pathogenesis of COPD in previous research [5–9]. 
Several biological processes have been identified as being 
activated in the pathogenesis of COPD, including chronic 
immune response and inflammation, cellular metabolic 
dysfunction, DNA damage, cell apoptosis and autoph-
agy, and protease/antiprotease imbalance pathways [5, 
10–12]. However, a comprehensive understanding of the 
interplay between cell-type-specific mechanisms and 
multi-hierarchical regulatory systems in COPD is still 
lacking.

Ras-associated binding (Rab) GTPases, a small GTPase 
family within the Ras superfamily, have been impli-
cated in the regulation of chronic immune response and 
inflammation via multiple pathways in recent years [13–
15]. Following LPS treatment of macrophages, upregu-
lation of the expression of RAB1 [16], RAB10 [17], and 
RAB21 [18] can induce the production of large quantities 
of inflammatory cytokines, resulting in sustained lung 
tissue injury. Our previous study also found that down-
regulation of RAB26 increased the p38 and JNK-MAPK 
signaling pathways, thereby exacerbating cigarette smoke 
extract-induced inflammatory responses [19]. Therefore, 
we attempted to elucidate the cell-type-specific potential 
mechanisms of Rabs in COPD at the “molecular-cellular” 
levels by integrating transcriptomics, single-cell RNA 
sequencing (scRNA-seq), spatial transcriptomics, and 
biological experiments to better understand the pathobi-
ology of this disease.

In this study, we examined the transcriptional char-
acteristics of COPD to identify its specific regulatory 
mechanisms using weighted gene co-expression net-
work analysis (WGCNA). With WGCNA and quantita-
tive analysis of lung tissues from patients with solitary 
pulmonary nodules, RAB32, which might regulate the 
pathological mechanisms of COPD, was identified. Soft 
clustering Mfuzz patterns were used to identify molecu-
lar modules that were consistent with RAB32 expression 
characteristics, and the biological functions of RAB32 

in COPD were uncovered utilizing enrichment analysis. 
ScRNA-seq pseudotime analysis was applied to identify 
potential molecules interacting with RAB32 in alveolar 
epithelial cells with similar temporal expression char-
acteristics to RAB32, and biological experiments were 
used to further validate. Besides, the correlation between 
RAB32 and other molecules were analyzed based on 
the clinical cohort. According to our knowledge, this is 
the first endeavor using multiple methods to reveal the 
molecular regulatory axis of RAB32 in COPD, which may 
provide new insights into the diagnosis and treatment of 
the disease.

Methods and materials
The overall study design is shown in Fig. S1.

Patients and samples
Patients with operable, solitary lung nodules were 
recruited from Zhongshan Hospital, Fudan Univer-
sity, Shanghai, China. Patients diagnosed as SCLC or 
lung squamous cell carcinoma, and parients with other 
chronic lung diseases were excluded. Then patients were 
divided into COPD and non-COPD group according to 
the diagnosis of COPD in GOLD (Global initiative for 
chronic obstructive lung disease) guideline criteria. Their 
demographic characteristics were collected, and normal 
lung tissue samples were obtained from distal resection 
margins (> 2 cm away from the lung nodule) after lobec-
tomy surgery for experiments and quantitative analy-
sis. The study was approved by the Ethics Committee of 
Zhongshan Hospital of Fudan University (B2018-137R) 
and all the participants have signed an informed consent.

Western blotting
The human lung tissue samples were lysed with RIPA lysis 
buffer (Beyotime Biotechnology, China, #P0013) and pro-
tease inhibitor cocktail (Beyotime Biotechnology, China, 
#P1005). Then the total protein was separated by SDS-
PAGE and transferred to a PVDF membrane. Following 
blocking in 5% skim milk, the membrane was incubated 
with primary antibodies overnight and the horseradish 
peroxidase-conjugated secondary antibody for one hour 
at room temperature. The bands were detected in the 
CLINX chemiluminescence imaging system and quantified 
using the Image J software (version 2.1.0). All target pro-
tein was normalized using GAPDH and the target pro-
tein in the control group was considered as the baseline 
(value = 1). Antibodies were as follows: GAPDH antibody 
(Cell Signaling Technology, USA, #5174), RAB32 Anti-
body (Thermo Fisher Scientific, Waltham, USA, #PA5-
104073), GPRC5A Antibody (Abmart, Wuhan, China, 
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#TD5148), Goat Anti-Rabbit IgG-HRP (Abmart, Wuhan, 
China, #M21002).

Real-time quantitative PCR (RT-qPCR)
Total RNA was isolated from human lung tissues using 
RNAiso Plus regents (Takara, Beijing, China, #9108) 
and RNA simple isolation kit (Tiangen, Beijing, China, 
#DP419). The PrimeScript™ RT reagent Kit with gDNA 
Eraser (Takara, Beijing, China, #RR047A) was used to 
perform reverse transcription to synthesize cDNAs. 
The RT-qPCR was performed using the QuantStudio 
5, and the relative expression of target genes was nor-
malized to β-actin. The primer sequences were as fol-
lows: β-actin forward, 5′- C A T G T A C G T T G C T A T C C A 
G G C-3′, reverse, 5′- C T C C T T A A T G T C A C G C A C G A 
T-3’. RAB6B forward, 5′- T G T A C G A C A G C T T C G A C A 
A C A-3′, reverse, 5′- C T G C G G A A C C T C T C C T G A C-3’. 
RAB13 forward, 5′- T T G C A G A G G A C A A C T T C A A C A 
A-3′, reverse, 5′- C T A T A T C C A C A G T G C G G A T C T T G-3’. 
RAB32 forward, 5′- C A G G T G G A C C A A T T C T G C A A 
A-3′, reverse, 5′- G G C A G C T T C C T C T A T G T T T A T G T-3’. 
RAB38 forward, 5′- G G G G A A G A C C A G T A T C A T C A A G 
C-3′, reverse, 5′- C G G T A A T A G A C C C T C G T C A T G T − 3’. 
RAB40B forward, 5′- G T C C G G G C C T A C G A C T T T C-3′, 
reverse, 5′- G G C C T G A A G T A T C C C A G A G C-3’.

Cell culture and immunofluorescence
A549 cell line was purchased from ATCC and cultured 
with Dulbecco’s Modified Eagle Medium (KeyGEN Bio-
tech, Nanjing, China, #KGM12800) and 10% fetal bovine 
serum (Gibco, USA, #10,099,141  C) at 37  °C with 5% 
CO2. Forty-eight hours after transfection of the plasmid 
encoding RAB32-GFP, the cells were fixed with 4% para-
formaldehyde and then permeabilized with 0.1% Triton 
X-100 (Sigma-Aldrich, USA, #T9284). Then they were 
stained with the primary antibody (Cell Signaling Tech-
nology, USA, #12,968) and appropriate fluorescence-
conjugated secondary antibody (Abmart, Wuhan, China, 
#M21014). Confocal images were recorded using the 
Olympus FluoView FV3000 confocal microscope.

Immunohistochemistry
The fresh tumor tissues were fixed with 4% paraformal-
dehyde and embedded in paraffin, then cut into 5  μm 
sections. After dewaxing, rehydration, antigen repair, 
and blocking, the slides were incubated with primary 
antibodies (RAB32: Thermo Fisher Scientific, Waltham, 
USA, #PA5-104073, GPRC5A: Cell Signaling Technology, 
USA, #12,968) overnight. The slides were incubated with 
horseradish peroxidase-labelled secondary antibodies 
(Zhongshan Golden Bridge, Beijing, China, #PV-9000) 
the next day. DAB was used to visualize the reaction, and 
hematoxylin was used to label the nuclei. The histologi-
cal score (H-score) was calculated using the following 

formula: H-SCORE = ∑(pi × i) = (percentage of weak 
intensity × 1) + (percentage of moderate intensity × 2) + 
(percentage of strong intensity × 3).

Data retrieval and processing
We downloaded four mRNA microarray datasets 
(GSE5058, GSE10006, GSE11784, and GSE20257) [20–
23] from the Gene Expression Omnibus database (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) on the same GEO 
platform (GPL570) using the GEOquery package in R. 
The raw data were preprocessed in R using the Robust 
Multi-array Average (RMA) algorithm for background 
correction and normalization. We additionally corrected 
for potential batch effects using the ComBat algorithm in 
the sva package [24]. Moreover, scRNA-seq data related 
to COPD were obtained from the GSE173896 dataset 
[25], and epithelial cell data were extracted for subse-
quent analysis.

Weighted gene co-expression network construction
We used the WGCNA package [26] to perform weighted 
gene co-expression network analysis to identify genes 
associated with COPD development. The similarity 
matrix was characterized by Pearson correlation values 
and transformed into an adjacency matrix based on the 
weighted coefficients ß. The adjacency matrix was then 
converted into a topological overlap matrix (TOM), and 
different modules were identified using the dynamic tree-
cutting method, with a minimum module size threshold 
of 50. We used Pearson correlation analysis to investigate 
the relationship between modules and disease features 
(COPD or non-COPD) to determine their relevance. 
Modules with p-value < 0.05 were considered significantly 
associated with clinical features, and the module with 
the highest correlation coefficient was designated as the 
central module. Furthermore, Venn diagrams generated 
using the VennDiagram package were used to identify 
intersection genes among the RAB32-related gene set, 
Mfuzz feature patterns, and WGCNA central module, 
which were considered potential interacting genes with 
RAB32 at the tissue level.

Mfuzz expression pattern clustering and RAB32
Expression-Related Features We used the “Mfuzz” pack-
age [27, 28] to cluster Mfuzz expression patterns based 
on RAB32 expression levels, and calculated the single-
sample gene set enrichment analysis (ssGSEA) scores of 
different clustering modules to characterize their levels in 
the COPD and non-COPD groups. Then, we separately 
calculated the Spearman correlation between the cluster-
ing modules and RAB32 in the COPD and non-COPD 
groups, and selected the clustering modules that differed 
between the two groups. Finally, we obtained the gene 
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module most closely related to COPD and RAB32 by 
analyzing these differential modules.

Functional and pathway enrichment analyses of RAB32 in 
COPD
First, we performed a “Spearman” correlation analysis to 
identify gene sets that are significantly correlated with 
RAB32 in COPD using a cutoff of p-value < 0.05 and 
correlation coefficient > 0.3 (or < -0.3). By using Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses, we studied the 
biological processes (BP), molecular functions (MF), cel-
lular components (CC), and potential signaling pathways 
of the RAB32-related gene set, and analyzed them using 
the clusterProfiler package [29]. Disease Ontology (DO, 
http://disease-ontology.org) [30] and Disease Gene Net-
work (DisGeNET, http://www.disgenet.org) [31] were 
identified using the DOSE package [32]. Finally, we used 
the Gene Set Variation Analysis (GSVA) R package [33] 
to perform Gene Set Enrichment Analysis (GSEA) on 
the gene expression matrix. Analyses with p-values < 0.05 
were considered statistically significant.

Regulatory network of RAB32 expression-related patterns
We extracted functional network and gene connectivity 
data using the STRING database (https://string-db.org/) 
[34]. STRING provides gene connectivity data based on 
several types of evidence (direct interaction, co-localiza-
tion, gene regulation, and co-citation), grouping closely 
related genes together with high confidence (interaction 
score > 0.7). We then used the iGraph package to analyze 
the connectivity data from STRING and construct a pro-
tein-protein interaction (PPI) network, analyzing the PPI 
using betweenness to obtain network hub genes. At the 
same time, we analyzed the extracted connectivity data 
using edge-betweenness and random walk methods to 
highlight subnetworks or neighborhoods. We conducted 
an enrichment analysis of relevant biological/pathway 
terms on the obtained subnetworks using the STRING 
database [35]. Gene set enrichment analysis for disease 
terms was conducted using the clusterProfiler [29].

Computational analysis of single-cell RNA sequencing data
We combined the single-cell gene expression data from 
all patient epithelial cells and normalized the data using 
SCTransform in Seurat [36]. The top 3000 highly vari-
able genes (HVGs) were identified and used to stabilize 
UMI counts. Principal Component Analysis (PCA) was 
performed using HVGs, and a shared nearest neighbor 
graph and uniform manifold approximation and pro-
jection (UMAP) were constructed using the Louvain 
algorithm with the top 30 principal components and 
clustering units. After removing unstable clusters, HVGs 
were identified again and clustered using the Louvain 

algorithm. Based on cross-cluster typical cell type marker 
scores, we determined the major epithelial cell types: 
AGER, CLIC5, and PDPN were used to label type I alveo-
lar epithelial cells (AT1s), and SFTPA1, SFTPA2, SFTPB, 
and SFTPC were used to label type II alveolar epithelial 
cells (AT2s).

Trajectory inference analysis
The Slingshot algorithm was used to define a computa-
tional estimated pseudotime trajectory in alveolar epi-
thelial cells. For each analysis, differential genes for each 
phenotype were reduced based on PCA and visualized 
in two dimensions using UMAP. The UMAP matrix was 
then fed into Slingshot to calculate the trajectory and 
pseudotime. These results were used to compute the 
trajectory using TradeSeq. We further adjusted the con-
cept of TradeSeq to construct gene expression changes of 
RAB32 and key genes identified at the tissue level within 
the same trajectory to identify feature genes with similar 
expression to RAB32 in alveolar epithelial cells [37].

Statistical analysis
Statistical analysis and graphics were performed and 
obtained using R software (version 4.2.0) and GraphPad 
Prism (version 8.0). Data were presented as mean ± stan-
dard deviation. Two groups were compared using Welch’s 
t-test or the Mann–Whitney U test (both two-sided), 
as indicated, after testing for normal distribution using 
the Shapiro–Wilk test. For the correlation analysis, the 
Spearman’s or Pearson’s correlation coefficient was cal-
culated. A p-value < 0.05 was considered statistically 
significant.

Results
Gene co-expression network construction and 
identification of hub rabs
Four publicly available COPD microarray datasets 
(GSE5058, GSE10006, GSE11784, GSE20257) from the 
GEO database were obtained for further analysis. These 
datasets were generated on the GPL570 platform, and 
thus, the batch effects were removed using the SVA 
package to conduct a comprehensive combined analy-
sis. After excluding samples with ambiguous diagno-
ses or duplicates, a total of 30 COPD patients and 163 
non-COPD control subjects participated in this study. 
The intricate regulatory processes underlying COPD 
occurrence were explored using the WGCNA approach. 
To construct a scale-free network, a soft threshold of 6 
was applied (Fig.  1A). Gene modules were identified 
using TOM detection, resulting in the identification 
of eight modules. Analysis of the association between 
gene modules and COPD characteristics revealed that 
the MEgreenyellow module exhibited the strongest cor-
relation with COPD (r = 0.51, p < 0.001, Fig.  1B). Apart 

http://disease-ontology.org
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Fig. 1 Identification of key Rab genes associated with COPD pathogenesis using WGCNA. (A) Evaluation of scale-free fit index and mean connectivity at 
different soft threshold powers. (B) Heatmap illustrating the correlation between module eigengenes and COPD status. Each cell displays the respective 
correlation coefficient and P-value. (C) Inter-correlation among WGCNA module eigengenes. (D) Scatter plot depicting the correlation between module 
membership within the MEgreenyellow module and Gene significance. (E) Venn diagram highlighting the intersection between WGCNA hub genes and 
the Rab GTPase family. (F) Clinical pathological parameters of ten lung tissues samples. (G) Bar plot demonstrating the difference in FEV1/FVC% between 
non-COPD and COPD groups (n = 5). (H) RT-qPCR analysis revealing mRNA expression differences of hub members within the Rab GTPase family between 
non-COPD and COPD groups (n = 5). (I) Western blotting and its quantification of RAB32 protein levels in lung tissues of non-COPD and COPD groups 
(n = 5). Note: ns denotes non-significance, * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
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from the MEgreenyellow module, only the MEblack 
module showed a weak correlation with COPD (r = 0.2, 
p = 0.005). Further characterization of the gene modules 
demonstrated the similarity between MEgreenyellow 
and MEblack (Fig.  1C). A significant positive correla-
tion was revealed between MEgreenyellow module genes 
and COPD (r = 0.57, p < 0.001, Fig. 1D). Therefore, genes 
within the MEgreenyellow module were considered cru-
cial regulators involved in the pathogenesis of COPD. 
Interestingly, the MEgreenyellow module contained five 
Rab genes, which were RAB6B, RAB13, RAB32, RAB38, 
and RAB40B (Fig. 1E).

To validate the expression of these Rabs, RT-qPCR and 
western blotting were applied on the lung tissue samples, 
whose clinical data was showed in Fig.  1F. There were 
seven male and three female patients, with an average age 
of 70.40 ± 8.17 years old. As one of the diagnosis criteria 
of COPD, the ratio of forced expiratory volume in one 
second and forced vital capacity (FEV1/FVC) was also 
listed in Fig. 1F. The mean FEV1/FVC value of the non-
COPD group was significantly higher than that of the 
COPD group (Figs. 1G and 82.41% vs. 52.91%, p < 0.0001). 
The relative mRNA expression level of RAB6B, RAB13, 
RAB32, RAB38, and RAB40B was calculated (Fig.  1H, 
n = 5). The mRNA expression level of RAB32 was higher 
in the COPD group while no statistical difference was 
found in the mRNA expression of other Rab genes. The 

differential expression could also be demonstrated at the 
protein level (Fig. 1I, n = 5).

Clustering of RAB32 expression patterns in COPD
Genes with similar expression patterns often indicate 
their involvement in shared biological processes and reg-
ulatory mechanisms. Therefore, we employed the Mfuzz 
algorithm to perform pattern clustering analysis based on 
the expression levels of RAB32 in both COPD and non-
COPD samples. As shown in Fig. S2, Mfuzz identified 50 
distinct clusters. The performance of these clusters was 
evaluated using the ssGSEA algorithm, and the correla-
tion between ssGSEA scores and RAB32 expression levels 
was analyzed (Fig.  2A). Interestingly, only four modules 
(Cluster15, Cluster28, Cluster32, Cluster35) exhibited a 
significant positive correlation with RAB32 expression 
in COPD (Fig.  2B-E). Surprisingly, Cluster28 and Clus-
ter35 showed significant associations with RAB32 in 
both COPD and non-COPD samples, albeit with varying 
degrees of correlation strength (Fig.  2C, E). Addition-
ally, we assessed the differential ssGSEA scores of Mfuzz 
modules between COPD and non-COPD, revealing that 
only Cluster35 displayed significantly higher ssGSEA 
scores in COPD. Based on these findings, we considered 
Cluster35 to be the most closely linked gene cluster with 
RAB32.

To further investigate the functional relevance of Clus-
ter35, we performed bioinformatics analysis using the 

Fig. 2 Molecular cluster identification based on RAB32 expression patterns using the Mfuzz algorithm. (A) Correlation between 50 Mfuzz gene modules’ 
ssGSEA scores and RAB32 expression. Each cell displays the respective P-value. (B-E) Scatter plots showing the correlation between ssGSEA scores and 
RAB32 expression levels for Cluster15 (B), Cluster28 (C), Cluster32 (D), and Cluster35 (E). (F) Boxplot displaying the distribution of ssGSEA scores for differ-
entially expressed modules in COPD and non-COPD groups. (G) Biological network graph of Mfuzz Cluster35, with different blocks representing neighbor-
hood structures extracted by iGraph network analysis data. The text next to the blocks represents the corresponding biological pathways. Circles of the 
same color represent participation in the same biological process. Note: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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STRING database. This analysis predicted associations 
between Cluster35 and functionally annotated sub-
networks or neighborhoods. Additionally, we utilized 
the clusterProfiler gene enrichment tool to identify the 
most important GO terms and KEGG pathways associ-
ated with Cluster35 (Fig.  2G). The enrichment analysis 
revealed that Cluster35 primarily influenced metabolism-
related processes, including Nucleotide metabolism, 
Purine metabolism, Pyrimidine metabolism, Mucin type 
O-glycan biosynthesis, and Glycosaminoglycan biosyn-
thesis. Furthermore, Cluster35 was found to be involved 
to a lesser extent in the PI3K-Akt signaling pathway, 
extracellular matrix receptor interaction, and Gluca-
gon signaling pathway. Notably, Staphylococcus aureus 
infection was identified as one of the key pathways in 
which Cluster35 participated, due to its influence on sev-
eral Keratin-related genes, such as KRT13, KRT23, and 
KRT27.

Functional annotation of RAB32 in COPD
Cluster35 showed a significant correlation with RAB32 in 
both COPD and non-COPD samples (Fig. 2E), suggesting 
that the Mfuzz algorithm alone may not fully characterize 
the potential molecular mechanisms of RAB32 in COPD. 
Therefore, we conducted a more in-depth investigation 
using Spearman analysis to identify genes significantly 
correlated with RAB32 expression in COPD. Among the 
genes showing overall correlation (FDR < 0.05), 1, 514 
genes exhibited a significant positive correlation with 
RAB32 expression (Fig.  3A, r > 0.3), while 1, 604 genes 
displayed a significant negative correlation (Fig.  3B, 
r < 0.3). Functional enrichment analysis of RAB32-related 
genes was performed using the Metscape website and 
clusterProfiler tool. Figure 3C showed the results of the 
GO analysis, including BP, MF, and CC categories. The 
results revealed that changes in BP were mainly enriched 
in negative regulation of the immune system process, fol-
lowed by leukocyte mediated immunity and leukocyte 
cell-cell adhesion. In the MF category, significant enrich-
ment terms included actin binding, immune receptor 
activity, and phosphoprotein binding. Moreover, the CC 
category was predominantly represented by endocytic 
vesicle, focal adhesion, cytoplasmic vesicle lumen, and 
secretory granule membrane. In the KEGG analysis, sig-
nificantly enriched terms included phagosome, staphy-
lococcus aureus infection, glycolysis / gluconeogenesis, 
Th17 cell differentiation, and HIF-1 signaling pathway 
(Fig. 3D). GSEA enrichment analysis based on the overall 
gene features can provide a more comprehensive under-
standing of the genes’ impact on biological phenotypes. 
As shown in Fig.  3E, RAB32 was primarily enriched in 
cytokine-cytokine receptor interaction, chemokine sig-
naling pathway, lysosome, and N-glycan biosynthesis in 
COPD.

Additionally, diseases associated with RAB32 were 
identified using the DisGeNET database and DO data-
base. The enrichment analysis based on the DisGeNET 
database revealed a relationship between RAB32 and 
infection (Fig. 3F). The DO analysis found RAB32-related 
genes mainly enriched in COPD, pneumonia, bronchial 
disease, and asthma (Fig.  3G). In conclusion, RAB32 
played a key role in the molecular regulatory network of 
COPD and might potentially function through various 
biological processes in COPD. Integrating the results of 
WGCNA key modules, Mfuzz pattern clusters, and cor-
relation analysis, a Venn diagram revealed nine poten-
tial interacting genes with RAB32, which were CAP1, 
CRTAP, C20orf24, FAM49B, GPRC5A, HK2, LDHA, 
PITPNC1, and TWIST2 (Fig. 3H).

Single-cell expression trajectory of epithelial-derived 
RAB32 in COPD
Previous studies have reported that RAB32 played a 
role as a cAMP-dependent protein kinase A anchoring 
protein by interacting with various metabolic organ-
elles in epithelial cells [38]. ScRNA-seq may provide us 
with a precise perspective to characterize the expression 
changes of specific genes at the single-cell level. There-
fore, we reanalyzed a scRNA dataset (GSE173896) from 
12 patients, all of whom provided lung function infor-
mation to determine their COPD status. After qual-
ity control and filtering of individual cells, high-quality 
transcriptomic data from 4, 771 alveolar epithelial cells 
(ATs), including 1, 721 cells from non-COPD tissue 
and 3050 cells from COPD tissue, were extracted (Fig. 
S3A, B). After removing unwanted cells and merging 
the data, dimensionality reduction was performed on 
the 4, 771 ATs for visualization. We annotated and clus-
tered each cell cluster using classical marker genes. The 
information-rich principal component analysis space 
was used for UMAP of cell clustering. The composition 
of ATs in the COPD ecosystem was primarily character-
ized by AT1s and AT2s (Fig. S4A, B). AT1s showed high 
expression of AGER, CLIC5, and PDPN, while AT2s 
displayed high expression of SFTPA1, SFTPA2, SFTPB, 
and SFTPC. In total, 1, 048 AT1s and 2, 711 AT2s were 
obtained. We compared the proportions of different ATs 
between COPD and non-COPD, and it is worth noting 
that there were slight differences in the preferences for 
AT1s and AT2s among different groups (Fig.  4A). AT2s 
predominated in both COPD and non-COPD, while the 
proportion of AT1s was slightly higher in COPD com-
pared to non-COPD, consistent with previous research 
results [9, 12].

However, a total of 874 ATs expressed RAB32, with 
47.14% localized in AT1s (Fig.  4B). To explore the data 
distribution characteristics of RAB32 in AT1s, we gen-
erated computationally imputed pseudotime trajectories 



Page 8 of 14Wu et al. Respiratory Research          (2024) 25:116 

using Slingshot (29,914,354). We observed that the cell 
branches of ATs followed a linear developmental tra-
jectory and identified the gene expression distribution 
along the ATs trajectory (Fig. S3C, D). Interestingly, we 
found that the expression trajectory of RAB32 exhibited 
a similar distribution between COPD and non-COPD. 
However, the early expression level of RAB32 was higher 
in the COPD group compared to the non-COPD group, 

and it declined and then increased again as pseudotime 
evolved (Fig. 4C). Surprisingly, among the nine potential 
interacting genes, the expression trajectory of GPRC5A 
closely resembled that of RAB32 (Fig.  4D). Co-localiza-
tion analysis using density plots revealed that RAB32 and 
GPRC5A were mainly co-expressed in AT1s (Fig. 4E). We 
also analyzed the correlation between the pseudobulk 
expression of RAB32 and GPRC5A in different patients 

Fig. 3 Associated genes of RAB32 in COPD and their involvement in biological characteristics. (A-B) Heatmaps showing genes significantly negatively (A) 
or positively (B) correlated with RAB32 in COPD patients. (C) GO enrichment annotation of RAB32-related genes. (D) KEGG pathway enrichment analysis 
revealing key signaling pathways involved with RAB32. (E) GSEA analysis of RAB32. (F-G) Enrichment analysis of RAB32 based on the DisGeNET database 
(F) and DO database (G). (H) Venn diagram illustrating the intersection between WGCNA hub modules, Mfuzz clusters, and RAB32-associated genes
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and found a significant positive correlation (Fig.  4F, 
p < 0.001).

Expression of GPRC5A in COPD and co-localization with 
RAB32
To assess the functional role of GPRC5A in COPD and its 
potential interaction with RAB32, we performed differen-
tial expression analysis of GPRC5A between COPD and 

non-COPD samples from mRNA microarray datasets. 
As shown in Fig. 5A, the expression of GPRC5A was sig-
nificantly upregulated in COPD compared to non-COPD 
samples. This finding was further validated by conducting 
western blotting on fresh lung tissue samples of recruited 
participants. The results revealed a significant increase 
of GPRC5A expression in the COPD group compared 
to the non-COPD group (Fig. 5B). Additionally, confocal 

Fig. 4 Single-cell analysis revealing expression trajectories and co-expressed molecules of RAB32. (A) The relative percentage of AT1s and AT2s in non-
COPD and COPD groups. (B) Expression of RAB32 in AT1s and AT2s based on origin. (C-D) Single-cell expression patterns of RAB32 (C) and nine potential 
interacting molecules (D). (E) Density plot showing co-expression localization of RAB32 and GPRC5A. (F) Scatter plot depicting the correlation between 
pseudobulk expression of RAB32 and GPRC5A. Note: AT1s, type I alveolar epithelial cells; AT2s, type II alveolar epithelial cells
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Fig. 5 Potential interaction between RAB32 and GPRC5A. (A) Differential expression of GPRC5A in non-COPD and COPD samples from mRNA microar-
ray datasets. (B) Western blotting and its quantitative results demonstrating protein level differences of GPRC5A between non-COPD and COPD groups. 
(C) Immunofluorescence displaying co-localization of RAB32 and GPRC5A expression in A549 cells. (D-E) GSVA analysis of RAB32 and GPRC5A. Note: * 
P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
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imaging demonstrated co-localization of GPRC5A and 
RAB32 in A549 cells (Fig.  5C), suggesting a potential 
interaction between these two proteins in the context of 
COPD. To gain insights into the potential mechanisms 
in which RAB32 and GPRC5A might jointly participate, 
we employed GSVA. As expected, the expression levels 
of both RAB32 and GPRC5A were significantly associ-
ated with COPD (Fig.  5D, E). Furthermore, we identi-
fied several significantly associated pathways, including 
FcγR-mediated phagocytosis, lysosome, natural killer cell 
mediated cytotoxicity, regulation of actin cytoskeleton, 
and cell adhesion molecules. In summary, GPRC5A co-
localized with RAB32 in COPD and potentially partici-
pated in underlying molecular mechanisms.

RAB32 and GPRC5A expression in COPD from resected 
lung tissues
To visually show the expression of RAB32 and GPRC5A 
in lung tissues from the COPD and non-COPD group 
and explore their potential correlation, immunohis-
tochemistry was utilized. Our findings revealed that 
RAB32 (p = 0.046) and GPRC5A (p = 0.039) were signifi-
cantly upregulated in the COPD group compared to the 
non-COPD group (Fig.  6A-D, n = 10). Additionally, we 
conducted Pearson’s correlation analysis to examine the 
relationship between RAB32 and GPRC5A in both COPD 
and non-COPD group. In the COPD group, a notable 
positive correlation was observed between the expression 
of RAB32 and GPRC5A. This correlation was found to be 
significantly higher in the COPD group (r = 0.65) when 
compared to the non-COPD group (r = 0.33) (Fig. 6E, F), 
further corroborating our previous findings.

Discussion
In this study, we utilized multiple approaches to com-
prehensively analyze and validate the important role of 
RAB32 in COPD and identified a potential interacting 
gene, GPRC5A. WGCNA provided a comprehensive per-
spective, and the verification experiments on human lung 
tissues confirmed the critical regulatory role of RAB32 in 
the pathogenesis of COPD. Mfuzz analysis, based on gene 
expression patterns in lung tissue, combined with corre-
lation analysis, identified hub genes potentially interact-
ing with RAB32. Furthermore, employing a single-cell 
perspective, we analyzed the expression characteristics 
of RAB32 during ATs differentiation in COPD and dis-
covered a robust interacting protein, GPRC5A. Co-local-
ization analysis using confocal imaging and density plots 
confirmed the co-localization of RAB32 and GPRC5A. In 
addition, multi-dimensional functional analyses further 
characterized the potential interaction mechanisms of 
RAB32 and GPRC5A in COPD.

Rab GTPases are considered crucial members of the 
vesicular transport machinery, acting as “molecular 

switches” in processes such as endocytosis, intracel-
lular vesicle trafficking, and cell cytoskeleton dynamics 
[39–41]. This process is also believed to be involved in 
the metabolism of epithelial cells, including lipid deg-
radation. Of great interest, both the molecular regula-
tory network constructed by Mfuzz key clusters and 
the enrichment analysis of correlated genes identified 
RAB32’s involvement in metabolic-related processes. 
Lysosome, an enriched process, was also highlighted. Pre-
vious studies have demonstrated the interaction between 
RAB32 and mTOR kinase: RAB32 depletion regulated 
the mTOR trafficking to lysosomes and reduced the asso-
ciation of mTOR and mTORC1 pathway proteins with 
lysosomes [42]. Additionally, RAB32 has been found to 
direct the ubiquitous machinery for transport from early 
endosomes to maturing lysosome-related organelles [43]. 
Therefore, we speculate that RAB32 may exert similar 
functions in COPD, potentially influencing cellular trans-
port and metabolic functions through lysosomes.

Combining the WGCNA network, Mfuzz co-expres-
sion clusters, and correlation analysis, we have identified 
potential interacting molecules of RAB32. Previous stud-
ies have indicated that RAB32 is primarily expressed in 
epithelial cells. Therefore, we utilized scRNA-seq data of 
ATs to unravel the expression characteristics of RAB32 
in COPD. Our study revealed that RAB32 expression 
underwent dynamic changes during ATs differentiation 
in COPD, presenting “a smile curve” with three distinct 
stages observed. In the early and late stages of differen-
tiation, RAB32 expression was higher in COPD com-
pared to non-COPD, while in the middle stage, RAB32 
expression may be higher in non-COPD. Similar reports 
have previously described this dynamic single-cell gene 
expression pattern alteration during cellular differentia-
tion [44]. Thus, we speculate that this dynamic change 
may be related to the disease state or the duration of air-
way stimulation in COPD. Unfortunately, we were unable 
to establish specific thresholds for these three stages.

GPRC5A is a G protein-coupled receptor gene [45]. 
Previous studies have reported decreased expression of 
GPRC5A in the bronchial epithelium of patients with 
COPD, and mice lacking GPRC5A were more susceptible 
to inflammation and lung adenocarcinoma [46, 47]. How-
ever, we found a similar dynamic change in the expres-
sion pattern of GPRC5A in COPD ATs as observed with 
RAB32. This suggested that the role of GPRC5A needed 
to be reassessed, as its expression during different devel-
opmental processes might lead to different outcomes. 
Additionally, we demonstrated through fluorescence 
confocal analysis and density plots that GPRC5A and 
RAB32 co-localized primarily in AT1s. Both RAB32 
and GPRC5A showed significant enrichment correla-
tions with lysosome, regulation of actin cytoskeleton, 
and cell adhesion molecules. Therefore, we propose that 
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Fig. 6 RAB32 and GPRC5A expression in lung tissue samples. (A) Immunohistochemistry staining results of RAB32 in lung tissues of non-COPD and COPD 
patients. (B) Bar plot showing RAB32 H-score of non-COPD and COPD patients (n = 10). (C) Immunohistochemistry staining results of GPRC5A in lung tis-
sues of non-COPD and COPD patients. (D) Bar plot showing GPRC5A H-score of non-COPD and COPD patients (n = 10). (E-F) Pearson correlation analysis 
of the relationship between RAB32 and GPRC5A in non-COPD patients (E) and COPD patients (F). Note: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
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in alveolar epithelial cells, RAB32 may interact with 
GPRC5A to regulate lysosomal transport, potentially act-
ing as a novel regulator of cellular metabolism in COPD.

Conclusions
In conclusion, we have elucidated the expression charac-
teristics of RAB32 in COPD lung tissues. Based on this 
expression pattern, we conducted a detailed analysis of 
the potential molecular regulation of RAB32 in COPD. 
By further integrating single-cell perspective and confo-
cal analysis, we discovered the co-localization of RAB32 
with GPRC5A and identified that RAB32/GPRC5A 
exhibited similar dynamic expression patterns. The 
RAB32-GPRC5A axis may potentially influence cellular 
metabolism in COPD by regulating lysosomal transport. 
Furthermore, we explored the value of the RAB32-
GPRC5A axis in clinical samples. Our study provided 
novel insights into the regulatory mechanisms of RAB32 
in COPD, which might serve as a potential target for 
intervention.
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