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Abstract

The role of vitamin D (VitD) in calcium and bone homeostasis is well described. In the last years, it has been
recognized that in addition to this classical function, VitD modulates a variety of processes and regulatory systems
including host defense, inflammation, immunity, and repair. VitD deficiency appears to be frequent in industrialized
countries. Especially patients with lung diseases have often low VitD serum levels. Epidemiological data indicate
that low levels of serum VitD is associated with impaired pulmonary function, increased incidence of inflammatory,
infectious or neoplastic diseases. Several lung diseases, all inflammatory in nature, may be related to activities of
VitD including asthma, COPD and cancer. The exact mechanisms underlying these data are unknown, however,
VitD appears to impact on the function of inflammatory and structural cells, including dendritic cells, lymphocytes,
monocytes, and epithelial cells. This review summarizes the knowledge on the classical and newly discovered
functions of VitD, the molecular and cellular mechanism of action and the available data on the relationship
between lung disease and VitD status.

VitD supplementation appears to be correlated with
decreased total mortality [1]. In the early 1920s a group
of scientists independently discovered that irradiating of
certain foods with ultraviolet light renders them antira-
chitic [2,3] and in 1922 Elmer V. McCollum identified
an antirachitic substance in cod liver oil and called it
“vitamin D” [4]. While the role of VitD in calcium and
bone homeostasis has been well described, its activities
on other physiological and pathophysiological processes
have been recognized only in the last years. Epidemiolo-
gical data suggest that several lung diseases, all inflam-
matory in nature, may be related to activities of VitD.
VitD deficiency might have a role in the development of
these diseases. The underlying mechanisms how VitD
metabolisms could be linked to the pathophysiology of
these diseases are often complex and not fully under-
stood. This review summarizes the role of VitD in lung
diseases.

Evolutionary aspects
VitD and its receptors are found throughout the animal
kingdom and are often linked to bone and calcium
metabolisms. The fact that precursors of VitD are found
in ancient organisms like krill and phytoplankton that
existed unchanged for at least 750 million years [5]
highlights its importance in physiologic and homeostatic
processes.
Variants of VitD and its receptors have been identified

in higher terrestrial vertebrates like humans [6], rodents
[7], birds [8], amphibia [9], reptiles [10], as well as in
zebrafish [11]. These animals possess a calcified skeleton
and depend on a functional VitD hormone system for
calcium and phosphorus homeostasis. Surprisingly, func-
tional VitD receptors (VDRs) have also been found in
lampreys, an ancient vertebrate that lacks a calcified ske-
leton [12]. VDRs were also identified in animals with a
naturally impoverished VitD status like the subterranean
mole rat [13] and a frugivorous nocturnal mammal, the
Egyptian fruit bat Cavaleros [14]. VitD precursors have
been found in ancient organisms like phytoplankton and
zooplankton, some of which exist unchanged for at least
750 million years [5,15]. Functional VitD hydroxylases
have also been characterized in bacteria like strains of
actinomyces [16,17] and streptomyces [18,19]. The
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precursors of VitD in those organisms may function as a
natural sunscreen to protect the host against UV-radia-
tion, since the absorption spectra of pro-vitamin D and
their photoproducts overlap with the absorption maxima
of DNA, RNA, and proteins [20].

Role of VitD in bone metabolism
VitD, which is photosynthesized in the skin or has been
derived from nutrition, is metabolized two times, before
it mediates its calcemic effects by binding to the nuclear
VitD receptor (VDR) [21,22](Figure 1). The metabolizing
enzymes belong to a group of cytochrome P450 hydro-
xylases, which can be found in eukaryotes, bacteria,
fungi and plants. In the human liver, the first hydroxyla-
tion of VitD on C-25 is performed by mitochondrial 25-
hydroxylase enzymes (gene names: CYP27A1 [23] and/
or CYP2R1 [24]) that both belong to the cytochrome
P450 family. The inactive 25-(OH)-vitamin D3 (25-(OH)
D3) metabolite is further hydroxylated at position 1a by
the mitochondrial cytochrome P450 enzyme 25-hydro-
xyvitamin-D-1a-hydroxylase (gene name: CYP27B1) and
converted to the bioactive 1a,25-dihydroxyvitamin D
(1,25-(OH)2D3). This latter step is mainly localized to
the proximal kidney tubule [25], however, many other
cell types, including lung epithelial cells, are capable to
perform this reaction [26-29]. The serum concentration

of 25-(OH)D3 reflects the organism’s VitD supply [30].
In the blood, VitD and the inactive, relatively stable 25-
(OH)D3 metabolite are bound in 99% to the vitamin D
binding protein (DBP) [31]. DBP polymorphisms (Gc
phenotype) are related to the DBP concentration and
VitD status [32]. The 1a-hydroxylation of 25-(OH)D3 is
upregulated by parathyroid hormone (PTH), calcitonin,
low calcium- and phosphate levels as well as by estro-
gen, prolactin and growth hormone [33]. Calcitonin,
cortisol, high phosphate levels and 25-(OH)D3 suppress
the 25-hydroxyvitamin D-1a-hydroxylase activity [34].
1,25-(OH)2D3 itself works as its own negative feedback
regulator by induction of the expression of a 24-hydy-
droxylase (CYP24A1). Further, 1,25-(OH)2D3 decreases
the production and secretion of PTH. PTH synthesis
and secretion is induced by decreased serum calcium
levels, which are detected by the calcium sensing recep-
tor of the parathyroid gland. PTH effects renal tubular
reabsorption of calcium, renal production of 1,25-(OH)

2D3 and promotes osteoclastogenesis [35].
1,25-(OH)2D3 is essential for the development and

maintenance of the growth plate, chondrocyte growth,
and the mineralised bone [21]. 1,25-(OH)2D3 modulates
the osteoclastogenesis by regulation of the receptor acti-
vator of nuclear factor kappa B (RANK), RANK ligand
(RANKL) and the soluble receptor osteoprotegerin

Figure 1 Metabolism and effects of VitD. VitD can be obtained from food or from synthesis in the skin under exposure to light. The precursor
is hydroxylated cytochrome P450 25-hydroxylase enzymes CYP27A1 and/or CYP2R1 and subsequently by the cytochrome P450 enzyme 25-
hydroxyvitamin D-1a-hydroxylase (CYP27B1) and converted to the bioactive 1,25-(OH)2D3, which has role in Ca and bone metabolism and, in
addition, in several other biological processes. Of note, bioactive 1,25-(OH)2D3 can also be generated in lung epithelia cells and monocytes/
macrophages.
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(OPG) [36]. It increases the expression of RANKL on
the osteoblast surface, which supports maturation of
progenitor and mature osteoclasts, and it inhibits OPG
expression, which binds RANKL and prevents RANK
mediated osteoclastogenesis [37].
VitD deficiency causes the development of an imbal-

anced calcium- and phosphate-homeostasis and the
occurrence of the bone diseases osteopenia, osteoporo-
sis, rickets, and osteomalacia with a subsequently
increased fracture risk [38]. The 25-(OH)D3 serum con-
centration is directly associated with bone mineral den-
sitys. VitD deficiency has several causes including
inadequate sun exposure (and loss of functional capacity
of the skin especially in the elderly), limited renal and
hepatic function or insufficient intestinal resorption
[39]. In VitD deficiency, the feedback on the PTH gene
promoter is lacking resulting in parathyroid hyperplasia,
hyperparathyroidism, and a mineralization defect of the
bone.
1,25-(OH)2D3 regulates many target genes by binding

to the VDR: approximately 3% of the mouse and human
genome is regulated via the VitD pathway [40]. As non-
genomic action of VitD in chondrocytes, it increases the
membrane-lipid turnover, prostaglandin production and
protease activity, leading to bone matrix modification
and calcification. Additionally to the expression of VDR
in bone and multiple tissues, the presence of 1a-hydro-
xylase in cells of several extrarenal tissues such as bone
as well as skin, prostate, the respiratory and gastrointest-
inal tract, strongly suggest that VitD impacts on pro-
cesses beyond the calcium and bone metabolism.

Role of VitD in immunity and host defense
More than a century ago (1849), the British physician C.
J.B. Williams described the use of cod liver oil in the
treatment of tuberculosis. He reported that among his
tuberculosis patients, 206 out of 234 showed a “marked
and unequivocal improvement” after treatment with cod
liver oil [41]. Since then manifold functions of VitD
have been discovered, indicating that VitD regulates
many cellular processes and is potentially involved in
the development of many diseases. Since the discovery
of VDRs in a variety of cells of the adaptive immune
system such as B- and T-lymphocytes [42,43], there
have been numerous reports about the immunomodula-
tory activities of VitD.
Cellular studies revealed that VitD modulates the

activity of various defense and immune cells including
monocytes, macrophages, lymphocytes, or epithelial
cells:

• Monocytes/macrophages: Low serum concentra-
tions of VitD in patients with rickets correlate with
decreased phagocytic activity of macrophages [44]

that could be reversed by supplementation with
1,25-(OH)2D3 [45]. Antimicrobial activity of macro-
phages against M. tuberculosis is increased in the
presence of 25-(OH)D3 after stimulation with myco-
bacterial ligands. Mycobacterial activation of toll-like
receptor-2 (TLR-2) leads to an increased expression
of VDR and CYP27B that results in an increased
conversion of 25-(OH)D3 to 1,25-(OH)2D3 and sub-
sequent expression of the antimicrobial peptide
cathelicidin via VDR [46,47].
• B lymphocytes: It has been shown that 1,25-(OH)

2D3 plays a role in B cell homeostasis by the inhibi-
tion of proliferation and induction of apoptosis of
activated B cells [48]. 1,25-(OH)2D3 inhibits the dif-
ferentiation of B lymphocytes to plasma cells and
memory B cells. These mechanisms may contribute
to the pathogenesis of B-lymphocyte related diseases
like systemic lupus erythematosus (SLE). Patients
with SLE have significant lower serum concentration
of both 25-(OH)D3 and 1,25-(OH)2D3 [49,50].
• T lymphocytes: A well-established function of VitD
within the adaptive immune system is its ability to
modulate T lymphocyte proliferation and function.
The biologically active 1,25-(OH)2D3 inhibits prolif-
eration of TH lymphocytes [51] and shifts the
expression of cytokines from a TH1 based response
towards a TH2 based profile [52,53]. Although 1,25-
(OH)2D3 might be able to involve direct effects on T
lymphocytes through the support of differentiation
of regulatory T cells, current data indicate that 1,25-
(OH)2D3 exerts its influence on the adaptive
immune response by modulating the functions of
dendritic cells (DCs). Regulatory T cells seem to be
activated by VitD with skewing of the Th1/Th2 bal-
ance towards Th2 [54]. Of note, there is evidence
for and against the role of VitD in Th2 biased dis-
eases [55], which will be discussed in more detail in
the asthma section below.
• Dendritic cells: The response of DCs to 1,25-(OH)

2D3 is restricted to myeloic DC, that express a differ-
ent set of TLRs and cytokines than plasmacytoic
DCs, which showed no tolerogenic response to 1,25-
(OH)2D3 [56]. 1,25-(OH)2D3 inhibits the maturation
of DCs and enhances the expression of cytokines
like IL-10, thereby 1,25-(OH)2D3 induces tolerance
through the suppression of TH1 lymphocyte develop-
ment and the induction of regulatory T cells [57].
• Epithelial cells: Airway epithelial cell express
enzymes of the VitD metabolism and are capable to
convert the precursor 25-(OH)D3 into the active
1,25-(OH)2D3 from [29,58]. They are an important
source of 1,25-(OH)2D3 that induces the expression
of cathelicidin or CD14 by cells of the innate
immune system. 1,25-(OH)2D3 converted by airway
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epithelial cells is able to modulate the inflammatory
profile after a viral infection by blocking the poly(I:
C) induced chemokine and cytokine production
while maintaining the antiviral activity [28,59]. As
epithelial cells are primary targets of respiratory
pathogens and cathelicidin has antibacterial and
antiviral activity, a seasonal decrease of VitD-depen-
dent epithelial host defense could contribute to
increased numbers of lower respiratory tract infec-
tion (RTI) during winter.

Roles of VitD in pulmonary diseases
VitD has complex effects on pulmonary cell biology and
immunity with impact on inflammation, host defense,
wound healing, repair, and other processes. While the
knowledge on direct mechanistic links between VitD
and lung diseases is limited, a number of epidemiologi-
cal and experimental are available that highlight the
relevance of this connection.

a) Asthma
A connection between VitD status and asthma has been
considered since many years. VitD deficiency has been
blamed as one cause of increased asthma prevalence in
the last decades [60]. VDR variants were found to be
associated with asthma in patient cohorts [61]. A recent
clinical investigation showed that high VitD levels are
associated with better lung function, less airway hyperre-
sponsiveness and improved glucocorticoid response [62].
A population-based study suggested that lower VitD
levels are associated with increased requirements for
inhaled corticosteroids in children [63]. Vitamin D
insufficiency is common in this children with mild-to-
moderate persistent asthma and is associated with
higher odds of severe exacerbation [64]. Epidemiologic
studies have also shown that maternal VitD intake dur-
ing pregnancy protects from wheezing in childhood
[65,66]. In contrast, also data exist that children whose
mothers had high VitD levels in pregnancy had an
increased risk of eczema and asthma [67], suggesting
that the time point of Vit D supplementation seems to
determine the susceptibility to atopic disease. On the
experimental level in a murine asthma model, the VDR
is necessary for the development of an allergic airway
inflammation [68].
The underlying mechanisms how VitD modulates the

pathogenesis of asthma are not clear. VitD may protect
from developing respiratory infections that could serve
as trigger for a deterioration of asthma [69]. VitD may
also modulate the function of various immune cells as
outlined above. Interestingly, application of VitD is
potentially capable to overcome the poor glucocorticoid
responsiveness in severe asthmatics by upregulation of
IL-10 production from CD4+ T cells [70].

b) Chronic obstructive lung disease (COPD)
The connection between VitD status and COPD has
attracted attention in the recent months. This is based on
data from observational studies that determined levels of
VitD in COPD patients. Black and colleagues examined
data from the NHANES III data set (cross-sectional survey
of 14091 adults in the US). After adjustment for potential
confounders, a strong relationship between serum levels of
VitD and lung function (FEV1 and FVC) was found [71].
Although a significant correlation with airway obstruction
could not be found, the observed dose-response relation-
ship may suggest a causal link [72]. A number of studies
have reported on 25-(OH)D3 levels in COPD patients.
Forli et al. found VitD deficiency (in this study defined as
below 20 ng/ml) in more than 50% of a cohort waiting for
lung transplantation [73]. In an outpatient study on
patients with COPD in Denmark, 68% of the participants
had osteoporosis or osteopenia [74]. A recent study
showed that VitD deficiency is highly prevalent in COPD
and correlates with variants in the VitD binding gene [75].
There are several factors that could account for VitD defi-
ciency in COPD patients: Poor diet, a reduced capacity of
aging skin for VitD synthesis, reduced outdoor activity and
therefore sun exposure, an increased catabolism by gluco-
corticoids, impaired activation because of renal dysfunc-
tion, and a lower storage capacity in muscles or fat due to
wasting [76]. Many steps of the VitD pathway (intake,
synthesis, storage, metabolism) can potentially be dis-
turbed in COPD patients.
A single nucleotide polymorphism (SNP) of the DBP

was shown to be associated with a decreased risk of
COPD by a mechanism that is unclear [77]. Similar
SNPs in the gene coding for DBP may influence the
level of circulating 25-(OH)D3 and 1,25-(OH)2D3

[32,78]. Therefore it has been hypothesized that their
protective role might be mediated by the bioavailability
of 1,25-(OH)2D3 [79].
The mechanisms that link VitD biology with the

development of COPD are largely speculative:

1) The association of VitD deficiency and reduced
lung function could depend on the calcemic effects
of VitD. The vital capacity and total lung capacity
was found to decline with an increasing number of
thoracic vertebral fractures as a direct consequence
of VitD deficiency [80]. Nuti et al. observed 3030
ambulatory COPD patients and found a strong asso-
ciation between COPD severity and fractures [81].
Kyphosis related to osteoporosis caused limitation in
rib mobility and inspiratory muscle function and
correlated with a reduction in FEV1 and FVC [82].
The altered properties of the thoracic skeleton could
result in failure of the respiratory muscles contribut-
ing to the pathophysiology of COPD.
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2) VitD deficiency could result in altered host
defense of the lung with subsequent growth of an
abnormal flora that triggers inflammation. Acute
exacerbations of COPD are an important cause of
hospitalization and lead to a faster decline in FEV1

[83]. Exacerbations are triggered by viruses, bacteria,
atypical strains, or a combination of these [84-87].
Potential bacterial pathogens are detected in about
50% of exacerbations. A therapeutic consequence
would be the up-regulation of the innate immune
defense system. Wang and colleagues demonstrated
that genes coding for the antimicrobial peptide
cathelicidin (LL-37/hCAP-18) are regulated by
VDRE-containing promoters [88]. In cultured mono-
cytes, a local increase of the 1,25D3-VDR complex
stimulates the production of LL-37, resulting in an
improved intracellular eradication of Mycobacterium
tuberculosis [47]. The data demonstrated that the
activation of TLRs on human monocytes triggers a
microbicidal pathway that is dependent on both the
endogenous production and action of 1,25-(OH)2D3

through the VDR.
3) The effect of VitD on extracellular matrix home-
ostasis not only in bone tissue, but also within the
lung may have a role in COPD development. Boyan
et al. found VitD to be an autocrine regulator of
extracellular matrix turnover and growth factor
release via matrix metalloproteinases [89]. Matrix
metalloproteinasis-9 (MMP-9) has been shown to be
elevated in induced sputum of COPD patients and a
causative role has been suggested in the develop-
ment of COPD [90]. VitD also to attenuates TNF-
alpha induced upregulation of MMP-9 in keratino-
cytes [91]. VitD deficiency may lead to a reduced
attenuation of MMP-9 activity resulting in enhanced
degradation of lung parenchyma.

Recently, it has been recognized that COPD is a sys-
temic disease [92] with several closely related comorbid-
ities [93]. Interestingly, VitD deficiency is associated
with a equivalent spectrum of diseases including coron-
ary heart disease, cancer, inflammatory disease and
infection [76]. Comorbidities of COPD such as reduced
bone mineral density and skeletal muscle weakness
[94,95] have been associated with low VitD serum
concentrations.

c) Infection
Tuberculosis
A number of candidate polymorphisms of VitD receptor
(VDR) and VitD binding protein (DBP) have been iden-
tified that modulate the development of tuberculosis
[96]. The genotype tt (detected by Taq I digestion) is
associated with decreased risk of tuberculosis. As

described by Lewis et al. [97], larger studies are required
to determine whether VDR polymorphisms play a role
in genetic susceptibility to tuberculosis worldwide. In a
recent meta-analysis, low serum levels of 25-(OH)D3

were associated with a higher risk of active tuberculosis.
The pooled effect size was 0.68 with 95% CI 0.43 - 0.93.
The authors concluded that the low VitD levels increase
the risk of active tuberculosis [98]. There are several
randomized, double-blind, placebo-controlled trials of
VitD treatment in tuberculosis. In one study, 67 tuber-
culosis patients were randomized to receive VitD (0.25
mg/day) or placebo during the 6 initial week of Tb
treatment [99]. A statistical significant difference in spu-
tum conversion (i.e, the change of detectable to no
detectable Mycobacteria in the sputum) was discovered
in favor of the VitD group (100% vs. 76,7%; p = 0.002).
Another trial was conducted in 192 healthy adult tuber-
culosis contacts in London, United Kingdom [100]. Par-
ticipants were randomized to receive a single oral dose
of 2.5 mg VitD or placebo and followed up at 6 weeks.
VitD supplementation significantly enhanced the ability
of participants’ whole blood to restrict BCG-lux lumi-
nescence after 24 hours in vitro as compared with pla-
cebo, but did not affect antigen-stimulated IFN-gamma
secretion after 96 hours. As the innate immune
responses are mobilized more rapidly than acquired
immune responses, the authors interpreted the 24- and
96-hour results as indicators of innate and acquired
responses, respectively. They concluded that vitamin D
supplementation may primarily enhance innate
responses to mycobacterial infection. Wejse et al.
included 365 tuberculosis patients starting anti-tubercu-
lotic treatment in Guinea Bissau [101]. 281 patients
completed the 12 month follow-up. The intervention
was 100,000 IU cholecalciferol or placebo at inclusion
and again at 5 and 8 months after start of treatment.
Reduction in TBscore and sputum smear conversion
rates did not differ among VitD and placebo treated
patients. Taken those data together there seems to be a
benefit of VitD in the treatment of tuberculosis but this
could not be reproduced in the largest study so far.
Respiratory tract infections (RTI)
RTI are more common in the winter period than during
summertime. Because the food intake of VitD is insuffi-
cient, sunlight exposure is the primary determinant of
VitD status in humans, and seasonal differences in VitD
level in human are well documented [76]. During the
winter months, there is insufficient UV-B exposure to
produce sufficient amounts of VitD. Wintertime VitD
insufficiency may explain seasonal variation in influenza
and other, mostly viral, RTIs [102]. Ginde et al. per-
formed a secondary analysis of the Third National
Health and Nutrition Examination Survey, hypothesizing
an association between 25-(OH)D3 level and self-
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reported upper respiratory tract infections (URTI) in
18883 subjects [103]. After adjusting for season, body
mass index, smoking history, asthma, and COPD, lower
25-(OH)D3 levels were independently associated with
recent URTI. In patients with respiratory tract diseases
(asthma and COPD) the association between 25-(OH)D3

level and URTI seemed to be even stronger (OR, 5.67
and 2.26, respectively). Avenell and colleagues used data
from the RECORD trial (VitD in secondary prevention of
osteoporotic fractures; n = 5292) [104]. In a “per proto-
col” analysis, a trend towards a benefit of VitD vs. pla-
cebo was detected, though not statistically significant.
Despite the large number of patients in these studies,
restrictions arise from the retrospective data analysis. A
prospective cohort study included 800 young Finnish
men serving on a military base [105]. Their serum 25-
(OH)D3 was measured in the beginning of a 6 month
observational period. Subjects with low 25-(OH)D3 levels
had significantly more days of absence from duty due to
respiratory infection than did control subjects (p =
0.004). In a case control study a total of 150 children (80
cases, 70 controls) was enrolled [106]. Low serum 25-
(OH)D3 (≤ 22.5 nmol/l) was associated with a signifi-
cantly higher odds ratio for having severe acute lower
respiratory tract infections (p < 0.001). These studies sup-
port an role of VitD in the development of lung infection.
However, in a recent clinical trial, Li-Ng et al. rando-

mized 162 adults to 50 μg VitD (2000 IU) daily or pla-
cebo for 12 weeks. Using a questionnaire they recorded
the incidence and severity of upper RTI symptoms.
Although VitD serum levels increased significantly in
the VitD treated group (vs. no change in the placebo
group), there was no benefit of VitD supplementation in
decreasing the incidence or severity of symptomatic
URTI [107]. This may be explained by the relatively low
number of subjects. Furthermore, the time period of 12
weeks was probably too short to show any effect. Taken
together, there is growing evidence for a protective role
of VitD in the development of RTI but high quality ran-
domized clinical trials within a sufficiently high number
of patients and for a sufficient period of time are miss-
ing. In a recently published trial, the supplementation of
1500 E VitD per day resulted in deceases incidence of
influenza A by 64% [69].

d) Cancer
A number of studies suggest that low levels of VitD are
associated with an up to 50% increased risk of colon,
prostate, or breast cancer [76,108]. As an example, a
recent nested case-control study showed that pre-diag-
nostic levels of VitD are inversely correlated with the risk
of colon cancer [109]. For lung cancer, the picture is not
clear at the present time. While TaqI polymorphism of
the VDR gene appears to be a risk factor for lung cancer

[110], low levels of VitD were only a cancer risk factor in
subgroups, i.e., in women and young individuals [111]. In
patients with diagnosed lung cancer, there was no main
effect of VitD level on overall survival [112]. In preclinical
animal models using carcinogen (NNK)-induced lung
carcinogenesis, application of 1,25-(OH)2D3 resulted in
decreased cancer growth [113].

Conclusions
VitD has a number of activities in addition to its effect
on calcium and bone homeostasis and influences pro-
cess such as immune regulation, host defense, inflam-
mation, or cell proliferation. VitD deficiency is
potentially involved in a number of lung disease. Several
hurdles must be overcome to validate the benefit of
VitD-based therapies: 1) Basic mechanisms are not clear
and the involved molecular pathways are likely difficult
to identify because VitD impacts on a variety of biologi-
cal processes in parallel. 2) Conclusive data from inter-
ventional studies are missing for many disease entities.
3) Since VitD has been used for many years, the phar-
maceutical industry might hesitate in starting a develop-
ment program. Nevertheless, the data available indicate
that VitD could be beneficial for the prevention or ther-
apy of important lung diseases.
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