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Abstract

Background: Macrophages are traditionally associated with inflammation and host defence, however a greater
understanding of macrophage heterogeneity is revealing their essential roles in non-immune functions such as
development, homeostasis and regeneration. In organs including the brain, kidney, mammary gland and pancreas,
macrophages reside in large numbers and provide essential regulatory functions that shape organ development
and maturation. However, the role of macrophages in lung development and the potential implications of
macrophage modulation in the promotion of lung maturation have not yet been ascertained.

Methods: Embryonic day (E)12.5 mouse lungs were cultured as explants and macrophages associated with
branching morphogenesis were visualised by wholemount immunofluorescence microscopy. Postnatal lung
development and the correlation with macrophage number and phenotype were examined using Colony-
stimulating factor-1 receptor-enhanced green fluorescent protein (Csf1r-EGFP) reporter mice. Structural histological
examination was complemented with whole-body plethysmography assessment of postnatal lung functional
maturation over time.
Flow cytometry, real-time (q)PCR and immunofluorescence microscopy were performed to characterise
macrophage number, phenotype and localisation in the lung during postnatal development. To assess the impact
of developmental macrophage modulation, CSF-1 was administered to neonatal mice at postnatal day (P)1, 2 and
3, and lung macrophage number and phenotype were assessed at P5. EGFP transgene expression and in situ
hybridisation was performed to assess CSF-1R location in the developing lung.

Results: Macrophages in embryonic lungs were abundant and densely located within branch points during
branching morphogenesis. During postnatal development, structural and functional maturation of the lung was
associated with an increase in lung macrophage number. In particular, the period of alveolarisation from P14-21 was
associated with increased number of Csf1r-EGFP+ macrophages and upregulated expression of Arginase 1 (Arg1),
Mannose receptor 1 (Mrc1) and Chemokine C-C motif ligand 17 (Ccl17), indicative of an M2 or tissue remodelling
macrophage phenotype. Administration of CSF-1 to neonatal mice increased trophic macrophages during
development and was associated with increased expression of the M2-associated gene Found in inflammatory zone
(Fizz)1 and the growth regulator Insulin-like growth factor (Igf )1. The effects of CSF-1 were identified as macrophage-
mediated, as the CSF-1R was found to be exclusively expressed on interstitial myeloid cells.
(Continued on next page)
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Conclusions: This study identifies the presence of CSF-1R+ M2-polarised macrophages localising to sites of
branching morphogenesis and increasing in number during the alveolarisation stage of normal lung development.
Improved understanding of the role of macrophages in lung developmental regulation has clinical relevance for
addressing neonatal inflammatory perturbation of development and highlights macrophage modulation as a
potential intervention to promote lung development.
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Background
A diverse network of regulators govern the developmen-
tal transformation from multipotent progenitors in the
post-induction lung buds to the complex architecture
and highly specialised terminal cell types that make up
the mature lung. These include a range of growth fac-
tors, signalling pathways and transcriptional regulators
that arise from epithelial, mesodermal and mesothelial
origins [Reviewed in [1]]. Another important component
of the lung organogenic milieu is the tissue macrophage.
Traditionally associated with host defence, inflammation
and scavenging functions, a greater appreciation of
macrophage diversity has revealed broader functions of
macrophages including vital roles in tissue repair [2-6]
and organ development [7-11].
Macrophages first arise in the yolk sac around embry-

onic day (E)8 in the mouse, and migrate into the devel-
oping head before colonising the entire embryo [12-14].
Large numbers of macrophages are present in virtually
all developing organs, with maximum numbers correlat-
ing with key periods of organogenesis [15]. Macrophages
contribute to development through apoptosis, phagocytic
clearance of cellular debris associated with tissue remodel-
ling, and as potent effector cells producing a range of
trophic factors that stimulate growth, regulate cellular dif-
ferentiation and promote angiogenesis [Reviewed in [16]].
Furthermore, mice deficient in tissue macrophages display
a range of developmental abnormalities including skeletal
and neurological deficiencies and impaired growth and
fertility [17-19].
Macrophages are essential in the normal development

of the mammary gland, pancreas and kidney; organs
which, similar to the lung, develop through branching
morphogenesis. Normally, macrophages are located sur-
rounding developing terminal buds but, in their absence,
branching is impaired resulting in atrophic, poorly-
branched terminal buds in the mammary gland [9,20],
and abnormal islet cell morphology and reduced insulin
production in the pancreas [21,22]. Furthermore, the
addition of the key macrophage regulatory cytokine
colony-stimulating factor (CSF)-1 to embryonic organ
cultures was shown to enhance development of the pancreas
[8] and kidney [11], which was associated with increased
number of tissue macrophages. While the organogenic
contribution of macrophages to these organs is well de-
scribed, less has been investigated regarding their roles in
the development of the lung.
Macrophages are present in the lung from the initi-

ation of development, and at E10 are located abundantly
in the mesenchyme and in association with elongating
lung buds [23,24]. Fetal lung macrophages likely contrib-
ute to lung development through the regulation of apop-
tosis and clearance of cellular debris. Defective pulmonary
phagocytosis in the phosphatidylerine receptor (psr)−/−

mutant mouse is associated with impaired removal of
apoptotic cells during development, which in turn results
in solid lungs devoid of alveoli [25]. Macrophages in the
lung are also sources of trophic factors such as insulin-like
growth factor (IGF)-1 [26] and wingless-type MMTV inte-
gration site (Wnt)7b [27], both of which are important
regulators in lung development.
To date, the understanding of lung macrophage func-

tion has focussed on pathological implications in settings
associated with neonatal inflammation with little insight
regarding their contribution to normal developmental
regulation. In this study, we provide the first report
characterising macrophages during the alveolarisation
stage of lung development in the mouse. Macro-
phages in the postnatal lung displayed a phenotype
indicative of an M2 or alternatively activated macro-
phage polarisation state, which is characteristic of
macrophages involved in trophic and tissue remodel-
ling functions. Furthermore, the number of CSF-1 re-
ceptor (CSF-1R)+F4/80+ macrophages was increased
during alveolarisation and, together with the expres-
sion of M2-associated genes, indicates the importance
of trophic macrophages during this period of signifi-
cant tissue remodelling.

Methods
Animals
All animal experiments were approved in advance by the
Monash University Animal Ethics Committee and conducted
in accordance with the “Australian Code of Practice for the
Care and Use of Animals for Scientific Purposes” (7th Edition,
2004). For embryonic lung culture, time-mated C57BL/6J fe-
males were humanely euthanised by cervical dislocation at
12.5 days postcoitum, with 0.5 defined as noon on the day a
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plug was detected. Embryos were collected, development was
assessed using the Theiler Staging (TS) criteria (TS 15–
16/27–31 somites) and the lungs were dissected. Postnatal
lung analyses were performed on Csf1r-EGFP mice, which
directs enhanced green fluorescent protein (EGFP) ex-
pression to cells of the myeloid lineage under the control
of the Csf1r promoter [14]. Neonatal mice were adminis-
tered mouse recombinant CSF-1 (1 μg/g bodyweight; Uni-
versity of Queensland Protein Facility, Brisbane, Australia)
in phosphate buffered saline (PBS) via intraperitoneal (i.p.)
injection at a final volume of 50 μl at postnatal day (P)1, 2
and 3, with P1 defined as day of birth [2]. Littermate con-
trols received vehicle PBS at the equivalent final volume.

Embryonic lung culture and wholemount
immunofluorescence labelling
Embryonic lungs were transferred onto polycarbonate mem-
branes (3 μm pore size; GE Water and Processing Tech-
nologies, Oakville, Canada), floating on serum-free media in
a 24 well plate (BD Biosciences). Culture media was com-
posed of Dulbecco’s Modified Eagle Medium F/12 (Gibco/
Invitrogen, Mulgrave, VIC, Australia), supplemented with
2.5 mM L-glutamine (Gibco/Invitrogen), 5 μg/ml insulin
transferrin selenium (Gibco/Invitrogen) and 100 μg/ml peni-
cillin streptomycin (Gibco/Invitrogen). Organs were incu-
bated for 48 hours at 37°C in 5% CO2. Explants were fixed
in ice-cold methanol (for 30 min at −20°C) and wholemount
immunolabelled to visualise macrophages in development.
Explants were permeablised in 0.1% Triton X (in PBS for
10 min) and non-specific binding was blocked by incubation
with 10% goat serum and 2% bovine serum albumin (BSA;
in PBS for 30 min). Explants were incubated with rat anti-
F4/80 (1:100; Serotec, Kidlington, UK; Clone Cl:A3-1) and
rabbit anti-E-cadherin (1:100: Cell Signalling Technologies,
Danvers, MA, USA; Clone 24E10) primary antibodies (at
37°C for 2 hrs) to demarcate macrophages and lung epithe-
lium, respectively. Explants were washed in PBS (3× 5 min
at room temperature), incubated with Alexa FluorW goat
anti-rat 555 and goat anti-rabbit 488 (Invitrogen; 1:500)
secondary antibodies (at 37°C for 1 hr). Membrane-bound
explants were placed on glass slides with PBS and
coverslipped.

Postnatal lung histology and macrophage
immunofluorescence labelling
Lungs were reinflated and fixed in situ through intratracheal
instillation of 10% buffered formalin at a pressure of 20
cmH20. After ligating the trachea, the entire thorax was
immersion fixed for 24 hr before lungs were dissected. To
assess histology, lungs were processed, embedded in paraffin
wax, sectioned at 5 μm, mounted on Polylysine™ slides
(Menzel-Glaser, Braunschweig, Germany) and stained with
haematoxylin and eosin. For immunofluorescence labelling,
excised lungs were placed in 30% sucrose solution (in PBS)
and allowed to infiltrate overnight at 4°C. Organs were
immersed in OCT compound (Sakura, Torrance, CA, USA)
in Tissue-TekW cryomoulds (Sakura) and frozen by floating
moulds on chilled isopentane on dry ice. Lungs were
cryosectioned at 5 μm and mounted on SuperFrostW Plus
slides (Menzel-Glaser). For macrophage visualisation, sec-
tions were blocked in 10% goat serum, incubated with rat
anti-F4/80 primary antibody (1:100; Serotec), washed and in-
cubated with AlexaFluorW goat anti-rat 488 secondary anti-
body (1:500; Invitrogen). Sections were counterstained with
DAPI nuclear stain (1:10,000 in PBS; Invitrogen) for 5 -
minutes, washed, mounted with DAKO fluorescent mount-
ing medium (DAKO Cytomation, Botany, NSW, Australia)
and coverslipped.

Flow cytometry
Whole lungs underwent enzymatic and mechanical di-
gestion to yield a single cell suspension as described pre-
viously [2]. In brief, organs were finely minced and
incubated in 1 ml digestion buffer; comprising 1 mg/ml
collagenase/dispase (Roche Diagnostics, Indianapolis,
IN, USA), 0.1% DNase I (Roche Diagnostics) and 5 mM
CaCl2 in Hank’s Balanced Salt Solution (Invitrogen) at
37°C for 20 minutes. Lungs were mechanically disrupted
using a 1000 μl pipette, before cells were gently passed
through a 25-gauge needle to yield a single cell suspension.
Cell suspensions were washed in fluorescence-activated cell
sorting (FACS) buffer; comprising PBS supplemented with
0.2% BSA, 0.5 M ethylenediaminetetraacetic acid (EDTA)
and 0.02% sodium azide, and centrifuged at 485 relative
centrifugal force (rcf; for 5 minutes at 4°C). Red blood cells
were lysed by resuspending samples in 1 ml of red blood
cell lysis buffer (at 37°C for 1 min; 8.3 g/L ammonium
chloride; pH 7.5;) and cell suspensions were filtered
through a 40 μm cell strainer (BD Biosciences, North Ryde,
NSW, Australia). Cell counts were performed using a
CoulterW Particle Count and Size Analyzer (Beckman
Coulter Australia Pty Ltd, Gladesville, NSW, Australia). To
assess macrophages across postnatal development, 1×106

cells were immunolabelled with anti-CD45 PE Cy5-conju-
gated antibody (1:1000; BD Biosciences; Clone 30-F11) at a
final volume of 20 μl for 20 minutes at 4°C in a 96 well
plate. Cells were washed in FACS buffer and centrifuged,
repeated twice, before being resuspended in 200 μl FACS
buffer and run on a BD FACSCalibur cytometer (BD Bio-
sciences). To assess macrophages at P5 following CSF-1
administration, cells were immunolabelled with anti-CD45
APC Cy7-conjugated (1:800; BioLegend, San Diego, CA,
USA; Clone 30-F11) and rat anti-F4/80 APC-conjugated
(1:200; eBioscience, San Diego, CA, USA; Clone BM8)
antibodies. Samples were run on a BD FACSCanto II
cytometer (BD Biosciences). Data analysis was performed
using Flow Jo FCS analysis software (Tree Star Inc.,
Ashland, OR, USA).
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Plethysmography
Respiratory physiology across a time course of postnatal
development was assessed using unrestrained barometric
whole-body plethysmography, as described previously
[28,29]. In brief, mice were placed in a sealed cylindrical
Perspex chamber (Neonate; 75 mm × 50 mm, Adoles-
cent/Adult; 150 mm × 50 mm), where changes in pres-
sure caused by breath tidal movements were measured
using a volumetric pressure transducer (model PT5A;
Grass Instrument Co., Quincy, MA, USA), amplified
(Octal Bridge Amp model ML228 and Powerlab 8/30
model ML870; ADInstruments, Bella Vista, NSW, Australia)
and the respiratory trace patterns recorded using Chart™
software (v5.1; ADInstruments). At the beginning of each
session the plethysmograph was calibrated by measuring the
pressure deflection caused by the injection of a known vol-
ume (300 μl) of air into the chamber. The temperature and
relative humidity within the chamber were noted at the
beginning and end of recordings (model HM34; Vaisala,
Hawthorn, VIC, Australia). Waveform analysis (Chart™;
ADInstruments) of respiratory traces was used to directly de-
rive the pressure deflection per tidal breath (PT), total breath
cycle time (Ttot; sec), breath frequency (f; breaths/min), in-
spiration time (Ti; sec) and expiration time (Te; sec). To
calculate tidal volume (VT; mL), the PT value obtained
from the respiratory trace was inputted into the equation
of Drorbaugh and Fenn [30], which was subsequently
used to determine minute volume (VE; mL/min; VT × f)
and inspiratory flow rate (VT/Ti; mL/sec).

QPCR
Semi-quantitative real-time (qPCR) was used to assess
gene expression in whole lungs across postnatal devel-
opment and in response to CSF-1. Lungs were dis-
sected and snap frozen in RNAlaterW RNA stabilisation
reagent (Qiagen, Doncaster, VIC, Australia). Total RNA
was extracted from organs using an RNeasy Mini Kit
(Qiagen) and concentration and purity were analysed
using a NanodropW Spectrometer (NanodropW Technolo-
gies, Wilmington, DE, USA). RNA was converted to
cDNA using a High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Mulgrave, VIC, Australia). qPCR
was performed using TaqmanW Gene Expression Assays
(Applied Biosystems) which provided pre-designed primer
and probes to assess the genes β-actin (Actb; Assay ID:
Mm00607939_s1), Chemokine C-C motif ligand (Ccl)2
(Mm00441242_m1), Inducible nitric oxide synthase
(Nos2; Mm00440485_m1), Tumor necrosis factor-α
(Tnf; Mm00443258_m1),Ccl17 (Mm00516136_m1), Arginase
1 (Arg1; Mm00475988_m1), Igf1 (Mm00439561_m1) and
Found in Inflammatory Zone 1 (Fizz1; Mm00445109_m1).
Reactions were performed in triplicate and run on a 7500
Real-Time PCR machine using SDS Software (v1.3; Applied
Biosystems). Threshold cycle (Ct) values were normalised
against endogenous Actb expression and presented as rela-
tive quantification (RQ).

In situ hybridisation and microscopy
Section in situ hybridisation for the Csf1r gene was
performed on paraffin-embedded, 5 μm sections of E12.5
embryonic lungs, as described previously [31] (Probe ID:
MGI:50000914; http://www.gudmap.org). Sections were
counterstained with haematoxylin. Light and fluorescence
microscopy were performed using an Olympus Provis
AX70 microscope (Olympus, Mt Waverley, VIC, Australia)
and AnalysisB software (Soft Imaging Systems GmbH,
Muenster, Germany). Bright field images were captured
using a DP70 colour camera (Olympus). Fluorescence im-
ages were captured using an F-View black and white cam-
era (Olympus). Image preparation and compilation was
performed using AnalysisB software (Soft Imaging Sys-
tems) and Microsoft Power Point (Microsoft Corporation,
Redmond, WA, USA).

Statistical analysis
Data is presented as mean ± standard error of the mean
(SEM). Statistical analysis was performed using GraphPad
Prism™ (Version 5 for Windows; GraphPad Software Inc,
La Jolla, CA, USA). Significance was assessed using a one-
way ANOVA and Tukey’s post hoc test for comparisons
across multiple time points or unpaired Student’s t-test
for comparisons between two experimental groups. A
p value <0.05 was considered statistically significant.

Results
Macrophages are abundant in embryonic lungs and
localise within branch points
To assess macrophages and their involvement in lung
branching morphogenesis, E12.5 lungs were cultured as
embryonic explants, with a continuation of branching
morphogenesis observed over 48 hours of culture
(Figure 1A-C). In this model system, flattening of the
organ facilitated wholemount visualisation and the
examination of macrophage localisation within the embry-
onic lung. Immunofluorescence labelling demonstrates
that embryonic macrophages express the mature macro-
phage marker F4/80 and are found abundantly within em-
bryonic lungs undergoing branching morphogenesis
(Figure 1D&E). In particular, the dense concentration of
macrophages localised within branch points is prominent
(Figure 1E). Such abundance, branch-specific location and
intimate epithelial interaction support the relevance of
macrophages in the regulation of lung development. Fur-
thermore, this system indicates the importance of early
fetal macrophages in colonising organs undergoing devel-
opment. With the explant system eliminating the contri-
bution of infiltrating cells at later stages of development, it
also indicates that the large numbers of macrophages

http://www.gudmap.org
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Figure 1 Macrophages are abundant in developing embryonic lungs. Ex vivo culture of E12.5 embryonic lungs, maintained for 48 hours on
floating polycarbonate membranes at the air-liquid interface, supported continuation of branching morphogenesis (A-C). Wholemount
immunofluorescence labelling of the lung epithelium (anti-E-cadherin; blue) and macrophages (anti-F4/80; green) revealed extensive macrophage
accumulation within developing lungs (D), and in particular within branch points (E).
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observed are seeded within the lung before E12.5, and are
then maintained through local mechanisms to support on-
going branching morphogenesis.

Macrophages are associated with the structural and
functional postnatal maturation in the mouse
In the mouse, the lung undergoes a significant period of
postnatal development comprising both the closing stages
of the saccular phase (E18.5–P5) and the alveolarisation
phase (P5-P36) [1,32], and thereby provides an important
animal species for investigating aspects of developmental
regulation. The structural and functional maturation
across the time course of postnatal lung development was
characterised in Csf1r-EGFP mice.
Structural maturation facilitates the progressive gain in

gas exchange efficiency; from large, thick-walled ter-
minal sacs to smaller, thin-walled alveoli with a large
surface area (Figure 2A-E). Histologically at P5, the lung
parenchyma consisted of large terminal sacs (Figure 2A),
and with continuing alveolarisation the subdivision into
smaller alveoli through the process of secondary sept-
ation was evidenced by the formation of ridges on sac
walls invading into the alveolar space (Figure 2B&C).
Continued secondary septation was evident at P14, with
significant numbers of smaller alveoli present (Figure 2C).
By P21 there was considerable thinning of alveolar walls
bringing blood vessels into close association with the epi-
thelium lining the alveolar space (Figure 2D). In these
later stages of the alveolarisation phase, much of the sec-
ondary septation was complete and maturation involved
thinning of the alveolar wall interstitium (Figure 2D). The
adult lung at 3M showed all the structural hallmarks of an
efficient gas exchange organ; large number of alveoli
providing a large surface area and extremely thin walls
to allow for efficient gas exchange (Figure 2E). Postna-
tal development was accompanied by the identification
of macrophages in the lung parenchyma. Visualised by
Csf1r-EGFP expression, these myeloid cells were pre-
dominantly macrophages, evident by their consistent
co-expression of F4/80 (Figure 2F-J). The large num-
bers of macrophages within the lung from P5-P21 cor-
relates with the key period of alveolar development.
These structural changes were mirrored by the func-

tional improvements observed during postnatal develop-
ment. Trace recordings from unrestrained barometric
whole-body plethysmography illustrated the breath pat-
terns and functional maturation of the lungs of mice
during postnatal development through measurement of
tidal pressure changes within the chamber due to respir-
ation (Figure 2K-0). At P5, before alveolarisation, the re-
spiratory capacity was limited, evidenced by trace
recordings where breaths were shallow, uneven and dis-
persed (Figure 2K). With maturation and the formation of
increasing numbers of alveoli from P7-P14 (Figure 2L&M),
breaths became deeper, more frequent and more even.
At P21, a breath pattern comparable to the adult was
observed (Figure 2N), however as lung growth contin-
ued tidal volume increased, as evidenced by the in-
creased amplitude of the trace pattern of the 3M lung
(Figure 2O). Waveform analysis provided a quantitative
assessment of lung function parameters to provide a
functional correlation with the structural maturation of
the postnatal lung. Progressive increases in tidal and mi-
nute volume were evident during postnatal lung devel-
opment, increasing 8-fold (0.012 ± 0.001 vs. 0.113 ±
0.011, p<0.001; Figure 2P) and 10-fold (3.09 ± 0.30 vs.
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33.93 ± 2.70, p<0.001; Figure 2Q) from P5 to 3M, re-
spectively, as the number of alveoli and overall size of
the gas exchange compartment of the lung increased.
As observed in the respiratory trace, breath patterns in
immature lungs were quite uneven with short inhala-
tions and slow dribbled exhalations at P5 and P7. This
was also demonstrated in the waveform measurements,
where expiration time decreased with the onset of
alveolarisation (Figure 2S) and inspiration time progres-
sively increased (Figure 2R) as a more even breath pat-
tern emerged. A progressive increase in inspiratory flow
rate was also observed, increasing approximately 4-fold
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from P5-P21 (0.24 ± 0.04 vs. 1.15 ± 0.09, p<0.001)
when a maximum flow rate was then reached and
maintained in the adult lung at 3M (Figure 2T).

Lung macrophage number is increased during
alveolarisation
To more comprehensively assess the correlation between
macrophages and alveolarisation, flow cytometry was
performed to quantitatively examine the proportion and
number of macrophages in the lung during postnatal de-
velopment and into adulthood (Figure 3A-C). Again
EGFP transgene expression facilitated the quantification
of Csf1r+ myeloid cells (Figure 3D), which were confirmed
as predominantly macrophages by consistent co-expression
of F4/80 (Figure 2F-J) evident in both alveolar and intersti-
tial macrophage subpopulations (Figure 3E&F). Lungs were
analysed at P1 in the saccular stage, at P5 when the lung
transitions from the saccular to alveolarisation stage, at P7,
P14 and P21 during alveolarisation, and at 3M in the
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increased at P14 and P21 during alveolarisation to ap-
proximately 16% (p<0.05), and at 3M a significant resi-
dent macrophage population was maintained in the
adult lung (Figure 3C).

Macrophages are polarised to an M2 phenotype during
alveolarisation
Correlations between macrophage phenotype and stages
of lung development were investigated by analysing ex-
pression of genes indicative of different macrophage ac-
tivation states (Figure 4). An upregulated expression of
Ccl2, Nos2 and Tnf is associated with an M1 or classical
phenotype where macrophages contribute to host de-
fence. M2 or alternatively activated macrophages are im-
portant in tissue remodelling, immunoregulatory and
trophic functions, and are characterised by upregulation
of genes including Arg1, Ccl17, Mrc1. A limited correl-
ation between M1 gene expression and postnatal lung
development was observed, although Ccl2 expression
was highest after birth (Figure 4A) and Nos2 decreased
in later life at P21 and 3M (Figure 4B). In contrast, sig-
nificant upregulation of M2 genes showed a distinct cor-
relation with the key period of alveolar development.
Arg1 expression was low in early postnatal life and began
to increase at P14 (Figure 4D). At P21, Arg1 expression
peaked and was 48-fold higher than at P1 (p<0.01), be-
fore returning to a low level of expression in the adult
lung. Ccl17 was also shown to increase during the
alveolarisation stage (Figure 4E). After low expression
from birth to P7, Ccl17 expression increased 9-fold at
P14 (p<0.001) before decreasing by P21. The resident
population of macrophages in the mature lung at 3M
also maintained significant Ccl17 expression. Similarly,
Mrc1 expression remained unchanged throughout early
postnatal lung development but peaked at P14 with a 3-fold
increase compared to P7 (p<0.01; Figure 4F). Expression
was decreased at P21 before high levels of Mrc1 expression
were maintained in the resident lung macrophage popula-
tion at 3M. When all the genes analysed are presented on
the same graph, the increase in the three genes indicative of
an M2 macrophage phenotype is particularly evident
(Figure 4G). This demonstrates a clear correlation be-
tween M2 macrophage phenotype and the key period of
alveolarisation.

CSF-1 administration increases developmental
macrophages in the lung and is associated with increased
Igf1 expression
CSF-1 is the primary regulator of macrophage differenti-
ation, survival and proliferation, and during development it
plays an essential and non-redundant role in regulating
organogenic macrophage functions [17,18,33,34]. Adminis-
tration of CSF-1 to neonatal mice was shown to increase
the number and proportion of developmental macrophages
within the lung at P5. Flow cytometric analysis was
performed on whole lungs, with populations of Csf1r-
EGFP+ leukocytes (Figure 5C) further gated on F4/80 ex-
pression to investigate macrophages (Figure 5D&E). There
was a trend towards an increase in total cellularity in CSF-
1-treated lungs (Figure 5A). CSF-1 treatment resulted in a
6% increase in macrophage number (58.10 ± 2.49 ×104 vs.
69.32 ± 2.56 ×104, p<0.05), and a 19% increase in macro-
phage proportion (57.77 ± 1.15% vs. 63.88 ± 1.78%, p<0.05),
compared to PBS-treated littermates (Figure 5B). Analysis of
gene expression also indicated that the CSF-1-mediated in-
crease in macrophages was associated with upregulation of
the Th2-associated molecule Fizz1 (1.05 ± 0.18 vs. 1.56 ±
0.05, p<0.05; Figure 5F) and the important growth regulator
Igf1 (1.01 ± 0.11 vs. 2.55 ± 0.41, p<0.05; Figure 5G).
These effects of CSF-1 administration were confirmed

to be via a macrophage-mediated mechanism as the
CSF-1R was expressed exclusively on interstitial myeloid
cells and not other cells of the developing lung. In situ
hybridisation for the CSF-1R at E12.5 (Figure 5H) and
Csf1r driven EGFP transgene expression at P7 (Figure 5I)
confirmed that the trophic activity of CSF-1 during lung
development is through macrophage regulation. Further-
more, the finding that CSF-1 supplementation promoted
a trophic M2 macrophage phenotype highlights CSF-1
and the manipulation of CSF-1-responsive cells as a po-
tential intervention for rescuing or promoting organ de-
velopment and maturation.

Discussion
The renewed interest in macrophages has stemmed from
an increased understanding of monocyte/macrophage
heterogeneity and how it relates to functional diversity
[35-38]. Differential activation states have been broadly
classified as M1, which encompasses macrophages in-
volved in host defence and inflammation, and M2, which
represent a more wound healing or tissue remodelling
phenotype. Despite the M1/M2 activation dichotomy
arising from studies of tissue disease and repair, under-
standing macrophage phenotype and function has impli-
cations for discerning and potentially enhancing their
contribution to organ development. Functions of M2
macrophages, such as extracellular matrix (ECM) pro-
duction, release of trophic factors and promotion of
angiogenesis, are fundamental to organogenesis. Further-
more, our microarray expression profiling has revealed
that embryonic macrophages in developing lungs, kid-
neys and brains show a comparable gene expression pro-
file consistent with an M2 activation state [11]. In
addition, CSF-1 can also promote an ‘M2’ macrophage
activation state, which is increasingly being linked to tis-
sue repair and regeneration [2,39,40].
During embryonic development, macrophages are lo-

cated abundantly within the embryo and are present in
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virtually all developing organs [7]. Macrophage functions
that support organogenesis include clearance of apop-
totic cellular debris associated with tissue remodelling
[41] and the provision of trophic support by producing a
range of regulatory mediators [5,42]. Macrophages also
contribute to appropriate cellular differentiation [8,21,22]
and angiogenic regulation [43], through both the produc-
tion of angiogenic factors [44] and by physically directing
angiogenic positioning [10]. As the lung buds form, mac-
rophages surround the elongating primary bronchi [24].
The use of the Csf1r-EGFP reporter mice has been an im-
portant tool in demarcating the developmental role of
macrophages in the embryo and has demonstrated a sig-
nificant population of CSF-1R-expressing macrophages
within the lungs at E13.5 [14]. Eliciting its effect through
binding with the CSF-1R [45], CSF-1 is a pleiotropic
growth factor also important in the regulation of preg-
nancy, fetal development and tissue regeneration
[Reviewed in [33,34,40]].
Macrophages in the lung have been well described for

their functions in host defence and inflammatory dis-
eases, however the importance of CSF-1R+ macrophages
in contributing to lung development has not been eluci-
dated. The present study demonstrates the localisation
of CSF-1R+EGFP+ alveolar and interstitial macrophages,
which co-express the mature macrophage marker F4/80,
in developing lungs during postnatal development. In
addition, CSF-1R+ macrophages were identified in embry-
onic lung explants using wholemount immunofluores-
cence microscopy, where they were found to accumulate
at branch points during lung branching morphogenesis.
The proposal that key organogenic periods are accom-

panied by an M2 macrophage phenotype was examined
in the postnatal lung. During alveolarisation from P14 to
P21, the expression of the M2 markers examined (Arg1,
Ccl17 and Mrc1) showed a significantly increased ex-
pression. The remodelling functions of M2 macrophages
are in accordance with the structural changes occurring
within the lung at this time. Mrc1 provides an important
mechanism for cellular clearance associated with
homeostasis and tissue reorganisation [46]. Arg1 is asso-
ciated with collagen formation and ECM production
[47]. This study thus highlights the importance of mac-
rophages in the alveolarisation stage of lung develop-
ment, and in particular the association with an M2
activation state. Furthermore in the adult lung, an
upregulation of M2 genes was also observed, supporting
the homeostatic and immunomodulatory functions of
resident pulmonary macrophages.
We have previously reported that CSF-1-responsive

developmental macrophages are associated with growth
and organ development, with delivery of recombinant
protein to neonatal mice resulting in increased body and
organ weight [2]. The present study showed that
administration of CSF-1 to neonatal mice was also in-
creased the number of macrophages in the developing
lung and promoted an increase in Fizz1 (Retnla) and
Igf1 expression. Fizz1 is an important mediator of lung
development and maturation, and is upregulated during
the saccular and alveolar stages, where its angiogenic
and proliferative functions are suggested to promote al-
veolar development [48]. Fizz1 is also reported to par-
ticipate in lung maturation by modulating surfactant
production [49]. Expressed on lung cells such as mesen-
chymal and alveolar type II cells, the function of
macrophage-derived Fizz1 is under-examined in previ-
ous reports, and its upregulation with CSF-1 supplemen-
tation indicates it may provide beneficial effects in
regulating lung development.
The increase in the key growth regulator IGF-1 in re-

sponse to CSF-1 administration provides insight regard-
ing the potential mechanism of trophic macrophage
function in organogenesis, and also supports an emer-
ging link between CSF-1, macrophages and the IGF-1
growth axis [34]. Interestingly, many of the growth and
developmental deficiencies observed in CSF-1-deficient
mice are common to IGF-1-deficient animals [50]. More-
over, an interaction between CSF-1 and the IGF-1 growth
axis is supported by the finding that CSF-1-deficient rats
fail to produce the postnatal spike in IGF-1 [34]. Fur-
thermore, IGF-1 production as a key mechanism of
trophic macrophage function is supported by a previ-
ous study which demonstrated that kidney regene-
ration in an experimental model of acute kidney
disease is mediated by CSF-1-responsive macrophages
and an upregulation of IGF-1 [2]. This has important
parallels for normal lung development as IGF-1 in-
creases during alveolarisation, and the promotion of
lung maturation using retinoic acid and dexametha-
sone has been shown to correlate positively with in-
creased levels of IGF-1 [51].
Identification of M2-polarised macrophages as an im-

portant component of the organogenic milieu during al-
veolar development has important potential clinical
implications, not only for understanding normal develop-
mental processes, but also for addressing lung immaturity
and the impact of neonatal inflammation of developmen-
tal perturbation. Inflammatory activation of macrophages
not only contributes to tissue damage and perturbation of
organ development through pro-inflammatory injury, but
also disrupts morphogenesis in the lung and alters the ex-
pression of key genes important in lung development
[23,52]. Nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) signalling in fetal macro-
phages upregulates pro-inflammatory mediators such
as interleukin-1β and alters expression of Wnt7b, bone
morphogenic protein-4 [23] and fibroblast growth
factor-10 [52]. Given the correlation between the
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timing of lung structural establishment and lung im-
munological maturity [53], it is plausible that the de-
velopmental deficits associated with inflammation may
also result from skewing of macrophages prematurely
away from their organogenic activities toward pro-
inflammatory mediation roles.
Understanding the regulation of alveolar development

has particular relevance with regard to clinical implica-
tions of developmental perturbation, and especially in
the setting of preterm birth. The neonatal mouse pro-
vides an excellent model for studying these aspects of
lung development as mice are born at a stage where
earlier aspects of organ development are still ongoing.
The period of postnatal development in the mouse was
characterised; correlating structural and functional mat-
uration with macrophage localisation. The histological
time course of postnatal lung development demonstrates
the processes of structural maturation, whereby large
saccules evident at the end of the saccular stage at P5
begin to subdivide through secondary septation to form
definitive alveoli clearly evident at P21. This period of
alveolarisation is critical in establishment of the gas ex-
change units required for proper function of the lung.
This is evidenced by the chronic lung dysfunction asso-
ciated with disruptions of alveolar development that
often result from preterm birth and injurious therapeutic
interventions that are required to keep the neonate alive
[54,55]. Indeed, Mund et al. reported that murine
alveolarisation occurs in two stages; phase 1 from P4-21
where alveoli arise from immature septae, and phase 2
from P21-36 where alveoli lift off from existing mature
alveoli [32].
The histological time course of postnatal lung develop-

ment was complemented by analysis of functional matur-
ation over this time. Changes in breath cycle parameters
were examined throughout postnatal lung development
using unrestrained barometric whole-body plethysmogra-
phy. This technique has been utilised in adult models of
lung injury [28,29] and was optimised for use in neonatal
mice in our study. Modifications including the adjustment
of the Perspex chamber size and increased sensitivity set-
tings for pressure transduction recording enabled the
measurement of lung function from as early as P5. Trace
recordings showed discernable changes in breath patterns
from P5 to adulthood, which when analysed provided
quantitative changes in lung function. As the number of
alveoli increased and the gas exchange compartment ex-
panded, there was a correlation with changes in lung
function parameters including an 8- and 10-fold in-
crease in tidal and minute volume from the beginning
of alveolarisation at P5 to adulthood. Normalisation of
inspiratory flow rate and expiratory time were also ob-
served over this time period of postnatal development
as the chest wall and diaphragm mature.
The unique saccular architecture of the mature lung is
associated with a different developmental cellularity pat-
tern than that of solid organs. Overall cellularity in-
creases rapidly in the alveolarisation phase and peaks at
P14. From this stage, development is associated with sig-
nificant remodelling and apoptosis as alveolar sacs form
and mature, resulting in a decrease in cellularity in the
adult mature lung. By digesting whole lungs, both inter-
stitial as well as alveolar macrophages were able to be
included for analysis, as opposed to the commonly used
bronchoalveolar lavage-based collection method which
restricts analysis to alveolar macrophages only. The pro-
portion of macrophages in the lung is highest during the
alveolarisation stage of lung development. A significant
resident population is also maintained in the adult lung
post completion of development, indicative of the unique
air-exposed environment and the importance of pulmon-
ary macrophages in clearing inhaled debris and modulat-
ing immune responses. The increased proportion of
macrophages observed during alveolarisation – a time that
lacks immunological relevance in this normal setting -
therefore suggests that macrophages are associated with
developmental functions.

Conclusion
This study has demonstrated that macrophages provide a
valuable contribution to normal lung development, and in
particular that macrophages are increased and display an
M2 polarisation phenotype during alveolarisation. An im-
proved understanding of the organogenic environment
important in regulating alveolar development has signifi-
cant clinical relevance. The impact of inflammation and
therapeutics on organogenic macrophage populations
should be considered when studying the dysregulation
and damage of the neonatal lung associated with preterm
birth. It also supports research into modulation of macro-
phages in lung development to provide a novel interven-
tion for enhancing lung maturation.
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