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Abstract
Tumor necrosis factor alpha (TNFα) is the most widely studied pleiotropic cytokine of the TNF
superfamily. In pathophysiological conditions, generation of TNFα at high levels leads to the
development of inflammatory responses that are hallmarks of many diseases. Of the various
pulmonary diseases, TNFα is implicated in asthma, chronic bronchitis (CB), chronic obstructive
pulmonary disease (COPD), acute lung injury (ALI) and acute respiratory distress syndrome
(ARDS). In addition to its underlying role in the inflammatory events, there is increasing evidence
for involvement of TNFα in the cytotoxicity. Thus, pharmacological agents that can either suppress
the production of TNFα or block its biological actions may have potential therapeutic value against
a wide variety of diseases. Despite some immunological side effects, anti-TNFα therapeutic
strategies represent an important breakthrough in the treatment of inflammatory diseases and may
have a role in pulmonary diseases characterized by inflammation and cell death.

Background
TNFα is the most widely studied cytokine member of TNF
super family. It is secreted by lipopolysaccharide stimu-
lated macrophages and causes necrosis of tumor in vivo
when injected into tumor bearing mice [1] and hence
bearing the name tumor necrosis factor (TNF). Experi-
mentally, TNFα causes cytolysis or cytostasis of certain
transformed cells [2] being synergistic with gamma inter-
feron in its cytotoxicity [3].

TNFα is produced by many different cell types. The main
sources in vivo are stimulated monocytes, fibroblasts, and
endothelial cells. Macrophages, T-cells, B-lymphocytes,
granulocytes, smooth muscle cells, eosinophils, chondro-
cytes, osteoblasts, mast cells, glial cells, and keratinocytes
also produce TNFα after stimulation. Glioblastoma cells
constitutively produce TNFα and the factor can be

detected also in the cerebrospinal fluid. Human milk also
contains TNFα.

Physiological stimuli for the synthesis of TNFα are IL-1,
bacterial endotoxins, TNF, platelet derived growth factor
(PDGF), and Oncostatin M. In fibroblasts the synthesis of
TNFα is stimulated by IFNβ, TNFα, PDGF, and viral infec-
tions. In thymic stromal cells the synthesis of TNFα can be
induced by neuronal growth factor (NGF). TNFα can also
stimulate or inhibits its own synthesis, depending upon
the cell type. In epithelial, endothelial, and fibroblastic
cells secretion of TNFα is induced by IL-17.

TNFα is a protein of 185 amino acids glycosylated at posi-
tions 73 and 172. It is synthesized as a precursor (inactive)
protein of 212 amino acids. TNFα converting enzyme
(TACE) mediates the cleavage of a membrane associated
form of TNFα to inducing the formation of the bioactive
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soluble TNFα [4]. The secreted protein exists as a mul-
timer of two, three or five noncovalently linked units, but
shows a single 17-kDa band in SDS-PAGE under nonre-
ducing conditions [5]. Monocytes express at least five dif-
ferent molecular forms of TNFα with molecular masses of
21.5–28 kDa. They mainly differ by post-translational
alterations such as glycosylation and phosphorylation.
TNFα is closely related to the 25-kDa protein of TNFβ
(lymphotoxin) with around 30% amino acid sequence
homology and sharing the same receptors and cellular
actions [6]. TNFα mediated signaling plays an important
role both in homeostasis and pathophysiology.

Role of TNFα in physiology and pathophysiology
Over the years it has become increasingly clear that TNFα
signaling is a complex series of biological event that
involves by at least 29 different tumor necrosis factor
receptor (TNFR) family members [7,8]. Under physiolog-
ical homeostatic conditions the biological functions of
this family of cytokines encompasses beneficial and pro-
tective effects in both the innate immunity and haemat-
opoiesis, and has a crucial role in organogenesis [7,8].
Members of the TNF super-family are also involved in sig-
naling mechanisms of cellular proliferation, survival and
apoptosis.

In vivo, administration of bacterial lypopolysaccharide
(LPS) induces high level of TNFα production in animal
models and reproduces many common features of septic
shock with severe pro-inflammatory reactions [9]. Fur-
thermore, lethal septic shock does not occur in TNFα-defi-
cient mice indicating an important contributory role of
TNFα in this syndrome. A high level of TNFα is also
observed in human subjects administered bacterial endo-
toxin [10]. These in vitro and in vivo studies indicate that
high level generation of TNFα leads to the exacerbation of
inflammatory and prooxidative responses that are impor-
tant in the pathogenesis of many diseases, including vari-
ous pulmonary disorders. Due to proinflammatory and
prooxidative actions, TNFα complicates many diseases,
the most important of which are atherosclerosis [11],
rheumatoid arthritis [12], psoriasis [13], inflammatory
bowel disease [14], Alzheimer's disease [15] and various
pulmonary disorders. This review very precisely describes
the roles of TNFα in various pulmonary diseases.

Mechanism of action of TNFα in pulmonary 
pathological consequences
Inflammation is believed to be the key event of TNFα-
dependent pathophysiological events. Deregulated
recruitment of leukocytes and lymphocytes at the
inflamed foci leads to injury. TNFα also depletes cellular
glutathione (GSH), a cellular antioxidant [16]. Over-
expression of TNFα in transgenic mice induces differential
changes in redox status and glutathione-regulating

enzymes [17] by depleting the total cellular glutathione
levels. In vitro studies also demonstrate that TNFα
depletes cellular GSH levels. Treatment of human pulmo-
nary artery endothelial cells with TNFα decrease the GSH
levels of the cells [18] and this depletion of glutathione
enhances the endothelial cell susceptibility to oxygen tox-
icity [19]. The exact mechanism through which TNFα
decreases the levels of glutathione in pulmonary tissues
has not yet been fully determined.

Both in vitro and in vivo studies show that TNFα stimu-
lates the reactive oxygen species (ROS) generation from
pulmonary and non-pulmonary tissues. Upon TNFα stim-
ulation a high level generation of ROS is observed in
human endothelial cells [20], and neutrophils [21]. Of
the different cell types, ROS derived from neutrophils
takes a very important role in TNFα-dependent alteration
of pulmonary vasoreactivity [21]. However, another study
observing the mechanism of adherence of neutrophil on
human pulmonary microvascular endothelial cells show
endothelial cells are the source of TNFα stimulated ROS
not neutrophil [22]. Over the years it is generally assumed
that in physiological homeostatic conditions most of the
ROS generation takes place at the phagocytic cells such as
macrophages or neutrophils and the ROS generation by
nonphagocytic cells is a minor fraction to that of the
phagocytic cells.

At the subcellular level NADPH oxidase and mitochon-
dria are the potential sites of TNFα-dependent ROS gener-
ation and subsequent oxidative stress in endothelial cells
[23]. Recent studies indicate that NADPH oxidase and
mitochondria are linked through a feedback mechanism
[23]. Interestingly, a recent study has reported that the two
sources ROS (mitochondria and NADPH oxidase) may
have divergent pathways in endothelial cells: The mito-
chondrial pathway is suppressed by rotenone and appears
to be directly involved in TNFα induced apoptosis by acti-
vating caspase 3. Another pathway is a membrane-
dependent pathway that is associated with the NADPH
oxidase and protects against TNFα-induced cell death by
activation of small GTPase Rac1 (a component of NADPH
oxidase) [24]. Thus, depending upon the type of stimulus
and the levels of generation of ROS, cells may undergo
either pro-survival or pro-apoptotic pathway in response
to TNFα.

During the course of ROS generation various adhesive and
proinflammatory molecules are generated that are respon-
sible for the complications of various inflammatory disor-
ders [25] (Fig. 1). In short, induction of cellular
inflammatory reactions, enhancement of oxidative stress
and increased expression of various proinflammatory
molecules altogether create the basic foundation of bio-
logical action of TNFα.
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Role of TNFα in pulmonary pathophysiology
TNFα plays a significant role in many inflammatory dis-
eases of lung. The most important lung diseases affected
by TNFα include chronic bronchitis (CB), chronic
obstructive pulmonary disease (COPD), asthma, acute
lung injury (ALI) and its severe form acute respiratory dis-
tress syndrome (ARDS) (Fig. 2). The diverse functions of
TNFα significantly depend upon the duration and quan-
tity of TNFα expression. In addition, genetic background
and timing of TNFα expression and release also determine
its function and its diversity of the immune response.
Thus, high level generation of TNFα is linked to the patho-
physiological consequences in a number of pulmonary

diseases. The following section discusses the role of TNFα
in various pulmonary diseases.

Role of TNF-α in asthma
Asthma is an inflammatory disease, characterized by air-
way hyperreactivity, chronic eosinophilic inflammation,
episodes of reversible bronchoconstriction, and mucus
hypersecretion [26]. The eosinophilic inflammation asso-
ciated with asthma is typically coupled with increased
numbers of CD4+ T lymphocytes that produce increased
levels of TH2type cytokines and decreased levels of γ-inter-
feron [27]. Of note, different allergic phenotypes cannot
be distinguished strictly on the basis of TH1 and TH2

Schematic diagram of the mechanism of action of TNFαFigure 1
Schematic diagram of the mechanism of action of TNFα. While TNFα-dependent activation of reactive oxygen species (ROS) 
generation enhances oxidative stress of cells and subsequent activation of pro-inflammatory and pro-oxidative transcription 
factors nuclear factor kappa-B (NF-κB) and the activator protein one (AP-1), antioxidants namely GSH attenuates oxidative 
stress and subsequent activation of NF-κB and AP-1. NF-κB and AP-1 are involved in the activation of pro-inflammatory mole-
cules like, vascular cell adhesion molecule one (VCAM-1), intercellular adhesion molecule one (ICAM-1) and receptor for 
advanced glycation end products (RAGE). + Indicates activation, - indicates inhibition → and ↔ indicate one way and two way 
flow of signals respectively.
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cytokines [28]. Although murine immune system differ
than human immune system, in general asthma and aller-
gic disorders are casually characterized by elevated Th2
cytokines (IL-4, IL-5, IL-13) and the chronic inflammatory
response in asthmatic airways is maintained by Th1
cytokines [28].

Several lines of evidences indicate that high levels of TNFα
are directly linked to asthmatic complications. Most of the
data are based on experimental observations and in-vitro
studies and a clear understanding of the exact role of
TNFα in childhood or adult asthmatic patients is yet to be
determined. In bronchi epithelial, endothelial and
smooth muscle cells are the primary targets of TNFα. It
causes substantial damage in the normal bronchial epi-
thelial cells [29] and the bronchi of the allergic mouse

model [30]. In severe bronchial allergic inflammation
TNFα-dependent leakage of epithelial and endothelial
cells may have severe pathophysiological consequences
[30]. In bronchial smooth muscle cells TNFα-dependent
hyperplasia and vasoconstriction are important. Severe,
persistent asthma is characterized by airway smooth mus-
cle hyperplasia, infiltration of inflammatory cell into
smooth muscle and increased expression of an array of
cytokines including IL-4, IL-13, IL-1β and TNFα. TNFα
has the potential to alter the expression of cell surface
receptors such as CD40 and OX40 present on the airway
smooth muscle cell [31]. In allergic asthma in the pres-
ence of low antigen concentrations TNFα is particularly
involved in the potentiation of histamine release [32].
TNFα causes vasoconstriction by secondary release of
endothelin 1 [33]. In the murine asthmatic model, the

Schematic diagram of the effects of TNFα on various pulmonary tissuesFigure 2
Schematic diagram of the effects of TNFα on various pulmonary tissues. Asthma is mainly a disease of bronchioles; Chronic 
Bronchitis (CB) and chronic obstructive pulmonary disease (COPD) are the disease of bronchioles and alveoli. In acute lung 
injury (ALI) and acute respiratory distress syndrome all the vital organs of the body namely lung, heart, kidney, liver etc are 
affected.
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late-phase airway hyperresponsiveness and airway inflam-
mation is mediated by TNFα-dependent activation of
phospholipase A2 [34]. It is further suggested that the aug-
mentation of the acetylcholine-induced contractile
response evoked by TNFα might be mediated by an upreg-
ulation of small G proteins i.e. RhoA in rat bronchial
smooth muscle cells [35]. The exact role of Rho family
members in controlling the TNFα-dependent signaling in
human pulmonary tissues is yet to be determined.

Role of cytokines other than TNFα in asthma
Recent studies using TNFα knockout mice or anti-TNFα
antibodies have demonstrated that elimination of TNFα
bioactivity alone is not sufficient to abrogate the murine
inflammatory response to aerosolized ovalbumin [36]. In
allergic inflammation, other proinflammatory cytokines
appear to act together with TNFα after repeated antigenic
challenges. Increased levels of IL-2, IL-4 and IL-5 are
detected in the lung homogenates from ova-sensitized
and challenged TNFR (+/+) and TNFR (-/-) mice com-
pared with those from control mice. Mice deficient in
TNFRs may have an altered immunological feedback
mechanism(s), resulting in an accentuated TH2-type
immune response in ova-induced allergic inflammation.
Numerous studies have suggested that IL-4 and IL-5 are
important in the pathogenesis of allergic inflammation
[37]. Another recent study examined the effects of anti-
body neutralization of IFNγ, IL-4 or TNFα in ova-sensi-
tized mice challenged for 8 consecutive days with
aerosolized ova. The experimental data showed that only
neutralization of IFNγ attenuated airway hyperreactivity
and eosinophil influx into the bronchoalveolar lavage
(BAL) fluid [38]. Recent clinical trials on human have
shown that sequestration of IL-5 by specific antibodies led
to reduced IL-5 levels and eosinophil numbers in blood
and sputum, but had no effect on lung function or bron-
chial hyper-responsiveness [39] or had a minor effect
[40]. Studies with IL-4 neutralization by soluble IL-4
receptor were also showing reduced asthma symptoms
and improved lung function [41]. Taken together, these
data suggest that cytokines other than TNFα may also
have important roles in controlling asthma symptoms.

Role of TNFα in chronic obstructive pulmonary 
disease and chronic bronchitis
Chronic obstructive pulmonary disease (COPD) is charac-
terized by chronic inflammation in the airway lumen
along with increased numbers of neutrophils, macro-
phages, CD8+ T cells or mast cells in the airway walls and
alveolar compartments [42,43]. This complex disease
state consisting of emphysema (centrilobular and panaci-
nar), small airway disease and chronic bronchitis (CB)
with air flow obstruction [44]. The cause for CB as such
may be diverse, including infections and air pollution, but
not necessarily smoking. CB without airflow obstruction

does not need to result in emphysema. However, smoking
is the most significant risk factor for patients with CB plus
airflow obstruction/COPD, although an important
(though small) subset of CB and COPD patients are non-
smokers. However given the fact that only 15%–20% of
smokers develop CB or COPD; which largely indicates
that apart from smoking a genetic component is probably
an operating factor for COPD [45,46]. In addition,
patients with COPD/CB often do not respond to corticos-
teroid therapy, whereas patients with CB alone do [46]. Of
note, very recently, a comprehensive review article dis-
cussed in details the differences of CB alone and COPD
[44].

Experimental animal models show that TNFα over-
expression induces the pathological changes similar to
emphysema and pulmonary fibrosis. For example, in
mice airspace enlargement, loss of small airspaces,
increased collagen, thickened pleural septa and increased
chest and lung cavity volume are some of the changes
mediated by TNFα over-expression [47]. Additionally,
TNFα and TNFβ genes contain several polymorphisms
including a transition at -308 region in TNFα gene (pro-
moter) where guanine (G) is replaced by adenine (A).
Similarly, in the first intron of the TNFβ gene at 252
region, A is replaced by G. These single nucleotide poly-
morphisms (SNPs) have been associated with COPD. For
example, an association between the TNFα -308A allele
and COPD was recently found in a Taiwanese population.
The patients with chronic bronchitis and impaired lung
function had a prevalence of the TNFα -308A allele as
compared to the control subjects [48]. In contrast to these
observations it was shown from a group in Thailand that
TNFα gene promoter polymorphisms are not associated
with smoking-related COPD [49]. Moreover, another
study also revealed that SNPs are independent factors in
COPD for the Han population in Beijing [50]. These
results indicates a race dependent differences exists in var-
ious Asian population and TNFα gene promoter polymor-
phisms may not be very important in the development of
COPD at least in these population. In this regard a recent
study indicates that subjects of COPD express different
patterns of proinflammatory mediators in bronchial
secretions, which appears to be modulated according to
the etiological cause. In particular, TNFα concentration
per se enables the recognition of COPD exacerbations due
to Pseudomonas Aeruginosa infection, while IL8 + IL1β lev-
els prove helpful in discriminating common bacterial
infection from viral infections and noninfectious causes
[51]. Therefore, the concentration of TNFα is likely to
depend on the type of infections in COPD patients [51].
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TNFα in acute lung injury and acute respiratory 
distress syndrome
Acute lung injury (ALI) is characterized by noncardiogenic
edema, pulmonary inflammation and severe systemic
hypoxemia. Acute respiratory distress syndrome (ARDS)
is the severe form of ALI. Systemic sepsis and pneumonia
are common predisposing factors for ARDS, which can
serve as the initial manifestation of multisystem organ
failure [52]. One of the earliest manifestations of ALI is
the activation of antigen presenting cells like macro-
phages (alveolar and interstitial), upregulation of cell sur-
face adhesion molecules and subsequent production of
cytokines and chemokines that induce sequestration of
neutrophils within the pulmonary microvasculature.
These cells migrate across the endothelium and epithe-
lium into the alveolar space and release a variety of cyto-
toxic and proinflammatory compounds, including
proteolytic enzymes, ROS and reactive nitrogen species
(RNS), cationic proteins, lipid mediators and additional
inflammatory cytokines [53]. This perpetuates a vicious
cycle by recruiting additional inflammatory cells which in
turn produce more cytotoxic mediators, leading to the
profound injury of the alveoli-capillary membrane and
respiratory failure.

Both TNFα and TNFβ subtypes appear in the circulation
during the onset of sepsis-induced lung injury, implicat-
ing these cytokines as potential inflammatory mediators
of this disease [54]. On the basis of several experimental
studies, TNFα along with other cytokines is suggested as
important early mediators of ALI [55]. Despite these find-
ings TNFα level present in the plasma, bronchoalveolar
lavage (BAL) and pulmonary edema fluid have not been
consistently correlated with clinical outcomes in patients
at risk or already diagnosed with ALI [56]. Interestingly,
this study did not consider the interplay between TNFα
and the two cell surface receptors that mediate its inflam-
matory effects: TNF-RI and TNF-R2. A number of studies
identified TNF-R1 in pulmonary tissues [57]. Recent stud-
ies demonstrated that a mixture of TNFα, IL-1β and IFNγ,
which are all known to be present in the lungs of the
patients with ARDS, stimulated the release of soluble
TNF-R1 but not TNF-R2 from cell surfaces. These soluble
receptors (sTNFR) of TNFα bind to circulating TNFα and
compete with cell surface receptors for TNFα binding
[58,59]. Thus, the lack of correlation between TNFα levels
and clinical outcomes may be attributed to sTNFR-TNFα
complex formation that decreases the bio-availability and
binding of TNFα into the membrane associated TNFR.

Interestingly, an association has been found between
increased risk of ARDS and the polymorphisms of sur-
factant protein B (SP-B) present in lung [60]. SP-B is
essential for the maintenance of biophysical properties
and the physiological function of the pulmonary sur-

factant. Pulmonary surfactant is a lipid-protein complex
that lowers surface tension along the alveolar epithelium,
thereby promoting alveolar stability and preventing col-
lapse of alveoli during ventilation [61]. Destruction of
surfactant in lung results in an increase in the surface ten-
sion at the air-liquid interface, which results in alveolar
and peripheral airway collapse and potential injury [62].
Interestingly, TNFα inhibits the SP-B promoter activity in
a human lung adenocarcinoma cell line NCI-H441 [63].
TNFα also down regulates surfactant protein A (SP-A)
gene expression in lung epithelial cells via the p38 MAPK
signal transduction pathway [64]. Therefore, loss of the
lung surfactant during severe septic conditions may be
related to increased TNFα activity.

Anti-TNFα therapy as a way to control 
pulmonary diseases
Involvement of TNFα in various inflammatory disorders
has led to the use of pharmacological agents that can
either suppress the production of TNFα or block its
action. A variety of candidates are being studied including
inhibitors of TNFα mRNA transcription (e.g. pentoxifyl-
line and phosphodiesterase inhibitors) [65,66], accelera-
tors of TNFα mRNA degradation (e.g. thalidomide) [67],
inhibitors of TNFα protein translation (e.g. tetravalent
guanylhydrazones) [68] and the metalloproteinase inhib-
itors that prevent the cleavage of the 26 kDa membrane-
bound protein to the active 17 kDa molecule [69]. Other
approaches include TNF receptor fusion proteins [70] and
monoclonal antibodies raised against TNFα. The latter
have been used in human subjects who have rheumatoid
arthritis, usually as a humanized murine antibody [71].
Therefore, these pharmacological agents may have poten-
tial therapeutic value for a wide variety of TNFα-mediated
disorders.

Anti-TNFα therapy for various pulmonary diseases overall
has shown various levels of success. For example, anti-
TNFα therapy prevents ventilation induced lung injury in
rats [72]. In another experimental rat model anti-TNFα
therapy ameliorates ozone-induced lung injury [73].
Recent studies also identified TNFα as a novel therapeutic
target in symptomatic corticosteroid dependent asthmatic
patients [74]. Finally, another case study illustrates a suc-
cessful treatment of bronchiolitis obliterans in a bone
marrow transplant patient with TNFα blockade [75].
However, the effects of anti-TNFα treatment presently
require further confirmation in controlled trials.

In contrast to the experimental studies several recent clin-
ical trials showed either very little or no beneficial effect
during anti-TNFα therapy in pulmonary diseases. For
example, double blind, placebo controlled randomized,
phase two trial of infliximab for a short term on 22 current
smokers with mild to moderate COPD showed no benefi-
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cial effects [76]. However, as pointed out in several
reviews [77,78] infliximab is just one of the many antago-
nists of TNFα and its receptors and its effect may need
longer treatment instead 6 weeks of treatment. Of note, a
positive effect has in general been seen in the treatment of
rheumatoid arthritis after 12 weeks of treatment. In con-
trast to this view in a recent meta analysis study it has been
shown thatan increased risk of serious infections and a
dose-dependent increased risk of malignancies in patients
with rheumatoid arthritis treated 12 weeks with two anti-
TNF antibodies (infliximab and adalimumab) [79]. Simi-
larly in mild to moderate asthmatic subjects, TNFα antag-
onism was not be effective for preventing allergen-
mediated eosinophilic airway inflammation. Diffused
alveolar hemorrhage, delayed hypersensitivity reaction
and ARDS syndrome have been also reported after inflixi-
mab treatment in Crohn's disease patients [80,81]. These
and other similar kinds of studies apparently present a
serious challenge for the selective or partial usefulness of
anti-TNFα therapy.

Conclusion
Anti-TNFα therapy demonstrates overall various levels of
success in arthritis, psoriasis, inflammatory bowel disease
and some other inflammatory disorders. However, no
conclusive data has yet been identified to prove the effi-
cacy of anti-TNFα therapy for major pulmonary diseases.
Genetic polymorphism of the TNFα promoter and heter-
ogeneity of the TNFα receptor gene may play a significant
role in the non-responsiveness of anti-TNFα therapy. The
most important adverse effects of anti-TNFα therapy
include the alterations of early and delayed type hypersen-
sitivity and dampened cell-mediated immune responses.
Of note, TNFα is one of the normal immune molecules of
the body. Therefore, future studies leading to a combina-
tion of drugs that protect the cellular immunity system
but selectively block TNFα action may be more insightful
for use to overcome the side effects of anti-TNFα therapy
in the long-term. Again, proinflammation and prooxida-
tion is the root cause of the complications of various
inflammatory diseases. Since TNFα directly induces the
oxidative stress of the cells by depleting the GSH (the
most abundant and vital antioxidant of the body) and
therefore elevates the ROS levels of the cells, it would be
interesting to check the effectiveness of combination of
drugs including GSH enhancer and low dose anti-TNFα
antibody to effectively combat the side effects of TNFα
therapy. Lastly, future studies involving 12 weeks or long
term anti-TNFα therapy may be useful against COPD (as
observed in rheumatoid arthritis patients) and effectively
combat pulmonary pathological consequences.
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