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Abstract
Background: Prophylactic exogenous surfactant therapy is a promising way to attenuate the
ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease
the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However,
there is little information on the mode by which exogenous surfactant attenuates I/R injury of the
lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation
and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated
the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung
compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells.

Methods: Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S)
group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and
subsequently exposed to 4 h of extracorporeal ischemia at 4°C and 50 min of reperfusion at 37°C.
The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage
of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately
after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and
electron microscopy. Stereology was used to quantify edematous changes as well as alterations of
the alveolar epithelial type II cells.

Results: Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of
variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases
(CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular
edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly
swollen in CE (423 μm3(0.10)) and CE+S (481 μm3(0.10)) compared with controls (323 μm3(0.07);
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p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar
body volume was decreased in both CE groups compared with the control group (p < 0.05).

Conclusion: Intratracheal surfactant application before I/R significantly reduces the intraalveolar
edema formation and development of atelectases but leads to an increased development of
peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not
affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related
to the intraalveolar activity of the exogenous surfactant.

Background
Despite the beneficial developments in clinical lung trans-
plantation during the last years the postoperative out-
come is still impaired by the occurrence (10–25%) of
primary graft dysfunction which manifests as acute lung
injury (ALI)/acute respiratory distress syndrome (ARDS)
[1]. Primary graft dysfunction contributes significantly to
early postoperative morbidity and mortality [1-3].
Ischemia-reperfusion (I/R) injury in the course of lung
transplantation is the main cause of primary graft dys-
function. I/R injury is associated with severe structural and
functional pulmonary alterations, e.g. intraalveolar and
interstitial edema or loss of blood-air barrier integrity
[4,5]. Among the different pulmonary changes during I/R
the inactivation of surfactant or the imbalance of sur-
factant function are known to be of significant importance
in the setting of ALI/ARDS [6-8].

In fact, surfactant is a complex mixture of lipids, mainly
saturated phospholipids, and proteins, including four sur-
factant apoproteins (SP-A, -B, -C, and -D), which is essen-
tial for the structural and functional integrity of the lung
[9]. In the alveoli, secreted surfactant is present in differ-
ent morphological forms which are attributed to be of dif-
ferent functional significance [7,10] and, most
importantly, it forms a lining layer at the air-liquid inter-
face which prevents the alveolar collapse during expira-
tion [11]. The cells that synthesize, store, secrete and
recycle surfactant are the alveolar epithelial type II cells
(AE2). Surfactant lipids as well as parts of the surfactant
proteins are stored in AE2 in specific organelles, the lamel-
lar bodies [12,13]. Disturbance of the highly regulated
homeostasis of pulmonary surfactant may result in severe
pulmonary dysfunction leading to ALI/ARDS. Therefore,
preservation of AE2 during I/R is of great importance for
the outcome of lung transplantation [14].

One of the most promising approaches to improve sur-
factant function during I/R is the application of exoge-
nous surfactant via the airways [15]. Indeed, the
application of exogenous surfactant preparations in the
treatment of severe ARDS resulted in an improved pulmo-
nary oxygenation, however, it failed to reduce mortality in
large controlled clinical trials of ARDS so far [16,17]. In
most clinical situations, it is not possible to predict the

development of ALI/ARDS, thus limiting the use of pro-
phylactic exogenous surfactant therapy. However, lung
transplantation is a potential clinical situation where this
is actually feasible [16]. Indeed, experimental [18-20] as
well as initial clinical data [21] suggest that exogenous
surfactant therapy of the donor lung mitigates I/R injury.

However, little is known as to whether the beneficial effect
of exogenous surfactant is due to an intraalveolar edema
reduction and/or due to an enhanced preservation of AE2
and, therefore, the homeostasis of endogenous surfactant.
Assessment of pulmonary edema formation in different
lung compartments and the ultrastructural integrity of
AE2 are important tools with high predictive value in
studies investigating lung preservation quality [4,5].
Therefore, we aimed at identifying the effects of exoge-
nous surfactant therapy on the structural alterations
induced by the whole sequence of transplantation-related
events including lung preservation, ischemic storage and
reperfusion. Using a reliable extracorporeal rat lung I/R
injury model [22], we established the pre-ischemic intrat-
racheal administration of exogenous surfactant and stud-
ied perfusate oxygenation, peak inspiratory pressure and
pulmonary vascular resistance during reperfusion. At the
end of the protocol, the lungs were prepared for quantita-
tive light and electron microscopical analysis. Stereologi-
cal estimations included the edema formation in different
pulmonary compartments as well as a detailed analysis of
the AE2 and their lamellar bodies.

Methods
Animals
Fifteen male Sprague-Dawley rats (Crl:CD; Charles River,
Sulzfeld, Germany) with a body weight of 430 ± 19 g
(mean ± SD) were anaesthesized intraperitoneally with
pentobarbital (Nembutal 1 mg/kg body weight) intu-
bated by tracheostomy, and heparinized via the vena cava
inferior (100 IU). Parts of the data reported for the control
group were previously published in Fehrenbach et al. [23]
and are indicated as being so in the tables reporting the
results. The animals investigated in the presented study,
including the controls, were part of the same randomiza-
tion process, i.e. they were from the same batch, were
housed at the same time under the same conditions,
received the same food, etc. All animals received humane
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care in compliance with the "Guide for the Care and Use
of Laboratory Animals" published by the National Insti-
tute of Health (NIH publication 85–23, revised 1996).
The experiments have been approved by the regional gov-
ernment.

Study design and tissue preparation
The animals were randomly assigned to three groups (n =
5 per group). The reason for choosing 5 animals per group
in a stereological study is that if a parameter is found to
change in one direction in all 5 cases, then the probability
that this is due to chance is p = (1/2)5 < 0.05, thus making
the experiment conclusive [24]. Operation and excision of
the heart-lung block were performed as described recently
[25]. Lungs immediately fixed in situ before excision
served as a control group. In the surfactant treated group,
50 mg/kg body weight of Alveofact (Boehringer, Ingel-
heim, Germany), a modified natural bovine surfactant,
was instilled intratracheally immediately before flush per-
fusion with the preservation solution. The dose of the sur-
factant bolus was chosen according to the manufacturer's
recommendation for neonatal respiratory distress syn-
drome.

Lungs from both experimental groups were flushed via the
pulmonary artery with 20 ml of cold (4°C) Celsior
(IMTIX, Pasteur Mérieux, France) solution and stored for
4 hours at 4°C. Reperfusion for 50 minutes was per-
formed with Krebs-Henseleit-buffer (8.0 ml/min at 37°C)
containing bovine red blood cells (hematocrit of 38 to
40%) using a quattro head roller pump (Mod-Reglo-Dig-
ital; Ismatec, Zürich, Switzerland). During reperfusion,
ventilation with room air at a tidal volume of 5 ml and a
rate of 40 breaths per minute was continuously per-
formed. A positive end-expiratory pressure (PEEP) of 3 cm
H2O was maintained. Fixation and tissue sampling were
conducted as described recently [4,26].

Briefly, after flush-perfusion with Krebs-Henseleit buffer
via the pulmonary artery, the left lungs were fixed by vas-
cular perfusion ex situ (I/R groups) or in situ (control
group) with HEPES-buffered glutardialdehyde/parafor-
maldeyhde (hydrostatic pressure = 15 cm H2O; airway
pressure = 12 cm H2O). At the end of perfusion, the left
main bronchus and pulmonary artery were tightly
clamped and the organ was stored in cold fixative until
further processing. Lung volume was determined by fluid
displacement [27] and systematic uniform random sam-
ples of lung tissue were taken and processed according to
standard methods [26]. By means of a tissue slicer, each
organ was cut into 10 to 12 horizontal slices of 3 mm
thickness. Starting with a random number, every other
slice was chosen for light or electron microscopy, respec-
tively. For light microscopy, the entire slices were subse-
quently osmicated, immersed in half-saturated watery

uranyl acetate, dehydrated in acetone and embedded in
glycol methacrylate. For electron microscopy, a transpar-
ent point grid was projected onto the sampled slices.
Whenever a grid point hit the cut surface of a lung slice,
tissue blocks were excised. By this method 8–10 blocks
were obtained from each single lung. The tissue blocks
were postfixed in osmium tetroxide, stained en bloc in
half-saturated watery uranyl acetate, dehydrated in an
ascending acetone series and embedded in araldite. Four
of the araldite blocks were randomly sampled for
ultrastructural analysis.

Functional parameters
Hemodynamic and respiratory data were recorded during
reperfusion as described previously [28,29]. Perfusate
oxygenation (ΔPO2), defined as the difference between
oxygen tension of the perfusate collected from the left
atrium after oxygenation (PO2ox) and of the deoxygenated
perfusate of the pre-load pool (PO2deox), was used to
assess the capability of gas exchange. Pulmonary vasculary
resistance (PVR) was determined by the standard formula
given by Fukuse et al. [22].

Stereological analysis
The sections were analyzed by established stereological
methods [30-32] using an Axioskope light microscope
(Zeiss, Oberkochen, Germany) equipped with a compu-
ter-based stereology system (Cast-Grid 2.00, Olympus,
Denmark) or an EM 900 electron microscope (Zeiss,
Oberkochen, Germany). All test fields for stereological
analysis were obtained by systematic uniform random
sampling.

Volume densities were estimated by point counting and
used to calculate the absolute volumes by multiplication
of the densities with the corresponding reference volume
[33]. Thus, the volumes of lung parenchyma and non-
parenchyma as well as their compartments (alveolar air
space, alveolar edema, alveolar septa, atelectatic regions
and peribronchovascular space) were estimated.

The number-weighted mean volume of AE2 was esti-
mated by using light microscopy and the isotropic uni-
form random rotator [34] based on single-section disector
sampling, i.e. only those AE2 that showed a nucleolus
were sampled [30]. At the electron microscopic level, the
volumes of nucleus, mitochondria and lamellar bodies
were estimated by point counting and multiplication of
the densities with the number-weighted mean volume of
AE2. The number of lamellar bodies was estimated by the
disector method [35] based on sets of two parallel
ultrathin sections with a thickness of approximately 100
nm (estimated by the Small fold method according to
[33]), the reference and the look-up section. In the refer-
ence section, AE2 with a corresponding transect in the
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look-up section were sampled in a systematic uniform
random manner. In this way, electron micrographs repre-
senting 35–60 pairs of AE2 were collected per lung. The
numerical density of lamellar bodies was estimated by
counting the tops of lamellar bodies based on the disector
method [35] and afterwards multiplied with the number-
weighted mean volume of AE2 to obtain the mean
number of lamellar bodies within an AE2.

Statistics
Differences between the experimental groups were tested
for significance with the nonparametric Wilcoxon-Mann-
Whitney test. The non parametric repeated measures anal-
ysis was used to test if the time course of lung functional
parameters differed between the two groups. If so, lung
functional parameters at 50 minutes vs. 10 minutes were
tested individually for significant differences for each
group, if not data were pooled. Stereological data are
given as mean (CV), with CV = mean/SD. All statistical
analysis and graphic presentations were performed using
the software program Statistica 6.1 (Statsoft, Tulsa, USA).
p values < 0.05 were considered to be significant.

Results
Lung function
After 10 minutes of reperfusion, perfusate oxygenation
(ΔPO2) was significantly (p < 0.02) decreased in lungs
treated with surfactant compared to untreated lungs (Fig.
1A). However, after 30 minutes of reperfusion, ΔPO2 in
surfactant treated lungs attained similar levels as in
untreated lungs. These levels remained unchanged until
the end of reperfusion, whereas untreated lungs showed a
significant decrease in ΔPO2 after 50 minutes of reper-
fusion compared to baseline. The pulmonary vascular
resistance (PVR) was higher in the surfactant group at any
time and steadily increased throughout the entire experi-
ment in both experimental groups (Fig. 1B). Initially, the
peak inspiratory pressure (PIP) was higher in surfactant
treated lungs but continuously decreased with the onset of
reperfusion (Fig. 1C), whereas the pressure needed to ven-
tilate untreated lungs increased throughout the entire
experiment.

Qualitative morphological analysis
Control lungs showed the normal parenchymal architec-
ture after vascular perfusion fixation. Alveoli were open
and almost free of edema, capillaries were widely open
except for some erythrocytes left in the septal capillaries.
The parenchyma of the untreated I/R lungs showed
numerous atelectatic and dysteletatic regions and small
areas of intraalveolar edema, mainly within the atel-
ectases. In the surfactant treated groups, there were no
signs of intraalveolar edema or atelectases but airspaces
contained large amounts of exogenous surfactant already
visible by light microscopy (Fig. 2). In surfactant treated

lungs, a prominent swelling of the peribronchovascular
space was visible, localized mainly in the proximity of
larger vessels. This was observable only to a much lesser
extent in untreated I/R lungs and almost absent in control
lungs.

The ultrastructure of AE2 was normal in control and sur-
factant treated animals. Only in the untreated I/R group
was there occasional dilations of the endoplasmic reticu-
lum and the appearance of mitochondria with electron
lucent matrix. The size of the lamellar bodies and their fre-
quency within AE2 varied considerably between the AE2.
However, in both experimental groups there were numer-
ous small lamellar bodies in comparison to the control
lungs (Fig. 3).

Stereological analysis
The total lung volume was comparable in all three groups
although it tended to be lower in the untreated I/R group
(p = 0.12). Open, i.e. non-atelectatic, parenchymal vol-
ume was significantly reduced in untreated I/R lungs com-
pared to surfactant treated and control lungs. Only in the
untreated I/R group was there a significant volume of atel-
ectatic lung tissue. Intraalveolar edema was present in
control and untreated I/R lungs whereas there was only a
very small amount in the surfactant treated lungs. The vol-
ume of intraalveolar septa was increased in the surfactant
treated lungs compared to the controls but not in the
untreated I/R lungs. However, adding septal tissue volume
of both open and ateletatic regions in the untreated I/R
lungs results in similar values of septal tissue volume as in
the surfactant treated lungs. The significantly largest vol-
ume of the peribronchovascular space was present in the
surfactant treated lungs with no differences between con-
trol and untreated I/R lungs (Table 1).

AE2 were significantly swollen in both experimental
groups as indicated by an increase in the number-
weighted mean volume. This was partly due to a signifi-
cant increase in the volumes of the nucleus and the mito-
chondria both in surfactant treated and untreated I/R
lungs.

The volume of lamellar bodies was slightly but signifi-
cantly decreased in the untreated I/R lungs compared to
controls. Although lamellar body volume was similar in
the untreated I/R as in the surfactant treated group, the
difference between surfactant treated and control lungs
failed to reach significance due to the large variation of
data in the surfactant treated group. Despite the lower
total volume of lamellar bodies the mean number of
lamellar bodies per AE2 was significantly increased in
both experimental groups. The number-weighted volume
of lamellar bodies revealed that the intracellular sur-
factant material of the experimental lungs was distributed 
Page 4 of 10
(page number not for citation purposes)



Respiratory Research 2008, 9:5 http://respiratory-research.com/content/9/1/5

Page 5 of 10
(page number not for citation purposes)

A) Perfusate oxygenation (ΔPO2) during reperfusionFigure 1
A) Perfusate oxygenation (ΔPO2) during reperfusion. After 10 minutes, ΔPO2 was decreased in surfactant treated lungs com-
pared to untreated lungs. After 50 minutes, ΔPO2 decreased in untreated lungs compared to baseline. B) Pulmonary vascular 
resistance (PVR) during reperfusion. Repeated measures analysis revealed no significance in the difference of the time course 
between the groups. The increase in PVR is significant at 50 minutes vs. 10 minutes in both groups. C) Peak inspiratory pres-
sure (PIP) during reperfusion. Whereas alterations in PIP in the surfactant treated group were not significant, the increase in 
PIP in untreated animals was significant at 50 min vs. 10 minutes. Points and squares represent mean values ± standard devia-
tion. Asterisk indicates statistically significant difference between untreated and surfactant treated group.
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Alveolar type II epithelial cells in A) the control lungs, B) untreated lungs subjected to I/R and C) surfactant treated lungs subjected to I/RFigure 3
Alveolar type II epithelial cells in A) the control lungs, B) 
untreated lungs subjected to I/R and C) surfactant treated 
lungs subjected to I/R. Note the dilations of the endoplasmic 
reticulum (arrows) in the untreated I/R group and the large 
amount of small lamellar bodies (arrows) in the surfactant 
treated group. The mitochondria (M) had a more electron 
lucent matrix in the untreated I/R group than in the other 
two groups. Lb = lamellar bodies; Cap = capillary lumen; Alv 
= alveolar lumen; Surf = surfactant; N = Nucleus.

Parenchymal architecture was mostly intact in A) control lung and C) surfactant treated lung subjected to I/R; B) untreated lung subjected to I/R showed regions of alveolar collapse and atelectasis formationFigure 2
Parenchymal architecture was mostly intact in A) control 
lung and C) surfactant treated lung subjected to I/R; B) 
untreated lung subjected to I/R showed regions of alveolar 
collapse and atelectasis formation. Note the formation of 
small areas with intraalveolar edema (Ed) in B. After sur-
factant treatment, numerous small intraalveolar surfactant 
aggregates were observed. Some larger aggregates almost 
entirely filled several neighbouring alveoli (Surf) in C. Alv = 
alveolar lumen; V = vessel; Ed = edema; At = atelectasis; Surf 
= surfactant.
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over a larger number of smaller lamellar bodies than in
the control group (Table 2).

Discussion
Although there have been great advances in the clinical
outcome of lung transplantation during the past years,
primary graft dysfunction showing the clinical aspect of
ALI/ARDS is still a significant problem in the early post-
transplantation period limiting the success of the whole
procedure [3]. Therefore, synergistic approaches for opti-
mization of graft preservation are needed. While great
efforts have been made to protect the lung from I/R com-
ing from the vascular side [8,36], preservation from the
airway side has come into focus quite recently: Prophylac-
tic exogenous surfactant therapy seems to be a promising
tool to enhance the structural and functional preservation
of donor lungs during I/R [15]. Experimental lung trans-
plantation has been performed in a variety of animal
models using different durations of ischemia and reper-
fusion and different time points and methods of sur-
factant application [14,18,19,37-40]. However, it is
currently unclear how exogenous surfactant exerts its pos-
itive effects in I/R injury. We hypothesized that exogenous
surfactant therapy in I/R injury results in reduction of pul-
monary edema formation and enhanced ultrastructural

integrity of surfactant-producing AE2 and their surfactant-
storing lamellar bodies. Stereological and light micro-
scopical investigation of the lung in I/R injury allows to
assess the grade of edema in terms of total volumes and to
distinguish between different localizations of edema for-
mation (intraalveolar, septal or peribronchovascular),
thus enabling a more detailed pathophysiological inter-
pretation than, for example, the determination of wet/dry
ratios [5,29,41,42]. Furthermore, combining the high res-
olution of transmission electron microscopy with stereol-
ogy gives insight into the quantitative ultrastructure of
AE2 and their lamellar bodies and therefore allows to
study the effect of I/R and of exogenous surfactant treat-
ment on the endogenous surfactant system [43-45]. The
present study is the first evaluation of exogenous sur-
factant treatment effects in I/R injury on lung structure
using a combined light and electron microscopic and
design-based stereological approach.

The present study was performed on a reliable isolated
lung model that allows to study the consequences of the
sequence of transplantation related events including lung
preservation, ischemic storage and subsequent reper-
fusion. However, it needs to be mentioned that our model
does not represent a real transplantation model. There-

Table 2: Stereological data on alveolar epithelial type II cells and lamellar bodies.

Control (n = 5) Celsior (n = 5) Celsior/Alveofact (n = 5)

 (AE2), [μm3] 323 (0.07) § 423 (0.10)* 481 (0.10)*

V(N, AE2), [μm3] 65.0 (0.14) § 116.7 (0.12)* 126.6 (0.13)*
V(M, AE2), [μm3] 21.4 (0.15) § 42.4 (0.10)* 48.6 (0.16)*
V (Lb, AE2), [μm3] 58.2 (0.09) § 47.3 (0.05)* 47.0 (0.29)
N(Lb, AE2) 93 (0.13) § 189 (0.17)* 242 (0.26)*

 (Lb), [μm3] 0.630 (0.09) § 0.255 (0.16)* 0.207 (0.38)*

Note. All data on AE2 and their lamellar bodies are given as mean (CV). Definition of abbreviations and symbols:  = number-weighted mean 

volume; V = volume; AE2 = alveolar epithelial type II cells; N = nucleus; M = mitochondria; Lb = lamellar body; § = data from Fehrenbach et al. [23]; 
* = p < 0.05 vs. control; † = p < 0.05 vs. Celsior.

nN

nN

nN

Table 1: Stereological data on edema formation in parenchymal and non-parenchymal compartments.

Control (n = 5) Celsior (n = 5) Celsior/Alveofact (n = 5)

V(Lung), [mm3] 6868 (0.12) 5516 (0.25) 6856 (0.13)
V(Open par, lung), [mm3] 6086 (0.12) 4514 (0.25)* 5842 (0.14)†
- V(Air, lung), [mm3] 5186 (0.14) 3560 (0.26)* 4679 (0.19)
- V(Ed, lung), [mm3] 180 (0.63) 160 (0.61) 4 (0.75)*†
- V(Sept, lung), [mm3] 395 (0.23) 445 (0.30) 622 (0.25)*
V(At, lung), [mm3] 0 342 (0.90)* 0†
V(Non par, lung), [mm3] 782 (0.26) 660 (0.35) 1014 (0.24)
V(Pbv, lung), [mm3] 44 (1.25) 89 (0.39) 268 (0.43)*†

Note. All data on edema formation are given as mean (CV). Definition of abbreviations and symbols: V = volume; Open par = Non-atelectatic 
parenchyma; Air = parenchymal airspace; Ed = alveolar edema; Sept = alveolar septum; At = atelectasis; Pbv = peribronchovascular space; * = p < 
0.05 vs. control; † = p < 0.05 vs. Celsior.
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fore, it cannot be evaluated whether the lung injury
observed in our study is representative of the clinical situ-
ation of ALI/ARDS after transplantation. In particular, our
model is not suited for longer observation times and for
the investigation of immunomodulatory effects resulting
from the interaction between donor and host. In order to
evaluate the functional significance of the experimental
procedure, we estimated perfusate oygenation, pulmo-
nary vascular resistance and peak inspiratory pressure.
Although these measurements provide a comparison
between the I/R groups, the interpretation with respect to
unchallenged lungs is limited due to the lack of control
data as the control lungs were not perfused. Despite these
limitations, the animal model is valuable to provide a
mechanistic picture of the beneficial effects of exogenous
surfactant in I/R injury.

Pulmonary edema is a hallmark of ALI/ARDS and shows
a sequential development within the different compart-
ments of the lung [46,47]. The first compartment that
shows fluid accumulation is the connective tissue that sur-
rounds the bronchi and larger blood vessels, the peribron-
chovascular space. In the following, the interstitium of
alveolar septa shows an increase in volume which is fol-
lowed by the flooding of the alveolar lumen by fluid.
Since the occurrence of fluid in the alveoli leads to an
increase in the oxygen diffusion distance and a decrease in
the oxygen diffusion area this type of edema is the func-
tionally most significant one [29]. In the present study, it
could be shown that exogenous surfactant therapy effec-
tively decreases the development of intraalveolar edema
while peribronchovascular edema is more pronounced
than in control and untreated I/R animals. Furthermore,
surfactant treatment abolished the development of I/R
associated atelectases. These results are in good accord-
ance with the perfusate oxygenation which was initially
decreased due to surfactant treatment but gradually
increased during reperfusion until a plateau was reached.
The initial decrease can be explained by the surfactant
bolus which resolves after a period of time. In the
untreated rats, perfusate oxygenation decreased during
reperfusion, possibly due to the development of intraalve-
olar edema and atelectases [29].

Although AE2 occupy only a small percentage of alveolar
surface area [48] they are essential for pulmonary func-
tion. First, they contribute to regeneration of the alveolar
epithelium under physiological and pathological condi-
tions. Second, they are the main producers of surfactant
and their metabolism also includes surfactant storage,
secretion, reuptake and recycling of surfactant compo-
nents [13]. Damage or dysfunction of this delicate cell
type therefore affects the function of the whole lung. Pres-
ervation of AE2 ultrastructure, in particular their lamellar
bodies, correlated with postoperative outcome in clinical

lung transplantation [49]. The present study showed an
increase in AE2 volume during I/R which was not different
between untreated and surfactant treated lungs and
mainly occurred due to a swelling of nuclei and mito-
chondria. I/R injury led to a small decrease in the volume
of lamellar bodies per AE2 which only reached statistical
significance in the untreated lungs. Interestingly, the
number of lamellar bodies per AE2 was increased in both
I/R groups and was not altered by surfactant application.
Taken together, I/R led to a similar or slightly decreased
volume of lamellar bodies which, however, was distrib-
uted over a greater number of smaller lamellar bodies.
These changes were observed in response to I/R injury and
were not affected by surfactant treatment. To our knowl-
edge, the only morphological investigation on the effects
of exogenous surfactant on AE2 and their lamellar bodies
in the adult lung was performed by Pinkerton et al. [50].
They observed a decrease in the volume fraction and pro-
file size of lamellar bodies in uninjured rabbit lungs.
However, the present study emphasizes the necessity to
gain data in absolute terms by design-based stereology
[32] as the swelling of AE2 led to a strong decrease in
lamellar body volume fraction despite only slight changes
in total volume. The occurrence of numerous small lamel-
lar bodies after I/R may hint to an enhanced secretion and
beginning synthesis of lamellar bodies during I/R [50].

Conclusion
In summary, the present study showed that exogenous
surfactant treatment decreases the development of intraal-
veolar edema and atelectases in I/R injury but is associated
with a pronounced swelling of the peribronchovascular
space. Exogenous surfactant does not influence the I/R
induced changes in AE2 ultrastructure and lamellar body
content. It is therefore concluded that the beneficial
effects of exogenous surfactant application observed in
this study are related to the intraalveolar activity of the
administered material while the morphological appear-
ance of the intracellular surfactant pool remains unaf-
fected. Future studies will need to systematically address
the optimal timing, the best surfactant preparations and
possible adjuvants that might further increase the benefi-
cial effects of exogenous surfactant therapy in I/R injury.
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