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Abstract
Background: Prostanoids are known to participate in the process of fibrogenesis. Because lung
fibroblasts produce prostanoids and are believed to play a central role in the pathogenesis of idiopathic
pulmonary fibrosis (IPF), we hypothesized that fibroblasts (HF) cultured from the lungs of patients with
IPF (HF-IPF) have an altered balance between profibrotic (thromboxane [TX]A2) and antifibrotic
(prostacyclin [PGI2]) prostaglandins (PGs) when compared with normal human lung fibroblasts (HF-
NL).
Methods: We measured inducible cyclooxygenase (COX)-2 gene and protein expression, and a profile
of prostanoids at baseline and after IL-1β stimulation.
Results: In both HF-IPF and HF-NL COX-2 expression was undetectable at baseline, but was
significantly upregulated by IL-1β. PGE2 was the predominant COX product in IL-1β-stimulated cells
with no significant difference between HF-IPF and HF-NL (28.35 [9.09–89.09] vs. 17.12 [8.58–29.33]
ng/106 cells/30 min, respectively; P = 0.25). TXB2 (the stable metabolite of TXA2) production was
significantly higher in IL-1β-stimulated HF-IPF compared to HF-NL (1.92 [1.27–2.57] vs. 0.61 [0.21–
1.64] ng/106 cells/30 min, respectively; P = 0.007) and the ratio of PGI2 (as measured by its stable
metabolite 6-keto-PGF1α) to TXB2 was significantly lower at baseline in HF-IPF (0.08 [0.04–0.52] vs.
0.12 [0.11–0.89] in HF-NL; P = 0.028) and with IL-1β stimulation (0.24 [0.05–1.53] vs. 1.08 [0.51–
3.79] in HF-NL; P = 0.09).
Conclusion: An alteration in the balance of profibrotic and antifibrotic PGs in HF-IPF may play a role
in the pathogeneses of IPF.
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Introduction
The concept of lung fibroblasts as effector cells in the
pathogenesis of idiopathic pulmonary fibrosis (IPF) has re-
cently evolved [1,2]. Lung fibroblasts respond, in vitro, to
inflammatory cytokines by producing growth factors and
collagen, resulting in fibroblast proliferation and extracellu-

lar matrix deposition [2–4]. In addition, activated lung fi-
broblasts have been shown to produce large amounts of
inflammatory cytokines and chemokines, in vitro, and
hence, these cells may also have a role as effector–inflam-
matory cells [1,2]. This capacity to produce both inflamma-
tory and fibrotic factors could mean that phenotypically
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altered lung fibroblasts act simultaneously as effector and
target cells, via paracrine and autocrine mechanisms, per-
petuating the fibrotic process [2].

Prostanoids are important regulators of fibroblast function
[5–9]. Prostaglandin (PG)E2 is thought to have antifibrotic
properties in vitro, but also can have proinflammatory ef-
fects both in vivo and in vitro[10–12]. Thromboxane (TX)A2
increases proliferation, and DNA and RNA synthesis in sev-
eral cell types, including fibroblasts and smooth muscle like
glomerular mesangial cells [13–16]. Conversely, prostacy-
clin (PGI2) decreases smooth muscle cell proliferation and
collagen synthesis [17,18].

Many cell types, including lung fibroblasts, contain cycloox-
ygenase (COX), a proximal enzyme in prostanoid produc-
tion, and can generate prostanoids [19]. It has been
previously reported that IPF lung fibroblasts have de-
creased COX-2 expression compared to normal lung fi-
broblasts and, hence, have decreased PGE2 production
[12,20,21]. Because of these findings and the fact that
PGs are important fibroblast regulators, we sought to in-
vestigate whether abnormalities in COX-2 expression
could be associated with an altered balance between profi-
brotic and antifibrotic PGs. We hypothesized that fibrob-
lasts from the lungs of patients with IPF (HF-IPF) have an
altered PG balance compared to normal lung fibroblasts
(HF-NL). This phenotypical abnormality could be an impor-
tant factor in the pathogenesis of IPF.

Materials and methods
Primary lung fibroblasts
Fibroblasts from the lungs of seven patients (6 males) with
IPF (HF-IPF) were harvested: a) from excised lung at the
time of lung transplantation; b) during an autopsy per-
formed within 4 hours from death; or c) during open or
transbronchial lung biopsies at the time of diagnosis. Of the
seven patients, five subjects had advanced lung fibrosis
and were receiving prednisone ± immunosuppressive
agents; 2 patients were at an earlier stage of their disease
and were not receiving immunosuppressive drugs. The
mean age of the patients was 59 (range 43–71)]. HF-NL
were cultured from five human lungs that arrived at our
transplant center with the intention of being used for trans-
plantation, but for various reasons could not be transplant-
ed; these were macroscopically and microscopically
normal. The cells were harvested and cultured as per the
protocol described by Kumar et al.[22]. Briefly, lung tissue
sections were finely cut with sterile scissors and incubated
with serum free DMEM containing trypsin, DNAse and col-
lagenase for 30 min. The procedure was repeated twice,
and the supernatants were pooled and cultured in one 100
mm plate and incubated at 37°C in a 5% CO2 humidified
atmosphere. Culture medium (DMEM with 5% fetal bovine
serum [FBS] and penicillin/streptomycin) was replaced

three times per week and fibroblasts were passed (1:2
split) at the time they became confluent. On passage 4 the
cells were resuspended in 1 ml of DMEM with 20% FBS
and DMSO and frozen at -70°C. For each experiment de-
scribed below the cells were thawed, cultured and passed
at least once. All the experiments were conducted with
cells at passages 6 to 8.

Inducible cyclooxygenase (COX)-2 expression and 
eicosanoid production
COX-2 activity was determined by measuring PGE2, 6-
keto-PGF1α(stable PGI2 metabolite), TXB2 (stable TXA2
metabolite), and PGF2α production in stimulated fibrob-
lasts. HF-IPF (n = 7) and HF-NL (n = 5) were brought to
>90% confluency in 100mm plates and then placed on
serum free DMEM for 24 hours to render them quiescent.
Fibroblasts were then incubated in DMEM with 5% FBS
alone or in the same medium with IL-1β (2.5 ng/ml) for 24
hours. At the end of the incubation period the supernatant
was aspirated and fresh media containing 30 µM of ara-
chidonic acid was added to the plates. After 30 min of in-
cubation the supernatant was collected and saved at -
70°C for later eicosanoid analysis. The cells were then re-
suspended and divided into two aliquots, which were
used for RNA and protein extractions, respectively. The
above experiments were repeated in HF-IPF (n = 2) and
HF-NL (n = 2) using serum free media conditions.

Prostanoids were measured by modified stable isotope di-
lution assays that used gas chromatography-negative ion-
chemical ionization mass spectrometry as previously de-
scribed [23]. Briefly, deuterium-labeled internal standards
of PGE2, PGF2α, TXB2, and 6-keto-PGF1α were added to
the supernatants with isopropyl alcohol. Isopropyl alcohol
was removed by evaporation under nitrogen. After acidifi-
cation to pH 3.5, the samples were extracted on precon-
ditioned C-18 PrepSep columns (Fisher Scientific, Fair
Lawn, NJ), and eluted with ethyl acetate. The extract was
then converted to a pentafluorobenzyl ester by treatment
with a mixture of 12.5% pentafluorobenzyl bromide in ac-
etonitrile and disopropylethylamine at room temperature
for 30 min. After evaporation of reagents, the residue was
subjected to TLC plates, using the solvent system chloro-
form/ethanol (93:7, vol/vol) for PGF2α and TXB2, and
ethyl acetate/methanol (93:2, vol/vol) for 6-keto-PGF1α
and PGE2. Then PGF2α was converted to trimethylsilyl
ether derivative by treatment with N,O-bis (trimethylsilyl)
trifluoroacetamide and dimethylformamide. The methoxi-
me derivative of TXB2, PGE2 and 6-keto-PGF1α was
made by treatment with 2% methoxamine hydrochloride in
pyridine at 70°C for 60 min, followed by evaporation of the
pyridine, addition of water, and extraction with ethyl ace-
tate. Derivatization was completed by formation of the tri-
methylsilyl derivatives by treatment with N,O-bis
(trimethylsilyl) trifluoroacetamide and pyridine. Eicosa-
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noids were quantified by measuring the ratio of the inten-
sity of ions m/z 569/573 for PGF2α, m/z 614/618 for
TXB2 and 6-keto-PGF1α, and m/z 524/528 for PGE2. An
analytical blank for each of these products was deter-
mined by measuring the amount of nondeuterated materi-
al, detected after extracting and analyzing 2 ml of saline to
which the deuterium-labeled internal standards had been
added.

Western analysis
After washing with PBS at pH 7.4, pellets were lyzed in sol-
ubilization buffer containing 50 mM TRIS at pH 8, 1%
Tween 20, 10 mM phenylmethylsulphonyl fluoride, diethyl-
dithiocarbamic acid, leupeptin and pepstatin A (all from
Sigma Chemical), sonicated, boiled with gel loading buffer
(62.5 mM TRIS-HCl, at pH 6.8, 10% glycerol, 2% SDS,
5% β-mercaptoethanol, and bromophenol blue), and centri-
fuged at 15,000 x g for 10 min. Equal amounts of protein
(70 to 100 µg) were separated by electrophoresis. SDS-
PAGE was performed using a 7.5% separating gel with a
4% stacking gel. The resolved proteins were transferred
electrophoretically to nitrocellulose membranes (Hybond-
ECL, Amersham Corp.). After transfer, the filters were incu-
bated overnight at 4°C in a blocking solution (20 mM TRIS
base, 137 mM sodium chloride at pH 7.6, 5% powdered
milk, 3% BSA), and incubated with primary polyclonal rab-
bit antibodies against COX-2 at a dilution 1:1000 (Cayman
Chemical, Ann Arbor, MI), for 1 hour at room temperature.
The filters were washed (TBS-0.1% Tween 20 at pH 7.6)
and incubated with horseradish peroxidase linked second-
ary antibodies at a dilution 1:4000 (Amersham). After
washing, the membranes were incubated with luminol
based chemiluminescence reagent (DuPont NEN Re-
search Products, Boston, MA).

Northern analysis
Cell pellets were lyzed and RNA extracted using the RNe-
asy method® (Qiagen), following the manufacturer's in-
structions. RNA was quantified by determining light
absorbance at 260 nm and then fractioned by electro-
phoresis (10 µg per lane) on a 1% agarose MOPS/formal-
dehyde gel. The RNA was denatured prior to loading by
incubating the RNA at 65°C for 10 min in a loading buffer
comprising 1X MOPS, 50% formamide, 6.5% formalde-
hyde, 5% glycerol, 0.1 mM EDTA, 0.025% bromophenol
blue, 0.025% xylene cyanol. The RNA was transferred by
gravity-assisted capillary method with 6X SSC to nylon hy-
bridization membrane, and then fixed to the membrane by
UV crosslinking (Stratalinker 1200 µj/cm2). Prehybridiza-
tion and hybridization were performed at 42°C and using
Quick Hyb® (Stratagene) as hybridization solution. The
COX-2 probe was random primed following the directions
of the manufacturer (Megaprime®, Amersham/Pharmacia).
The membrane was then washed at a final stringency of
0.2X SSC, 0.1% SDS, at 60°C for 30 min. The membrane

was wrapped in plastic wrap and exposed to Kodak XR film
at -70°C with intensifier screen overnight.

Statistical methods
All results are presented as medians with their range. Com-
parisons between HF-IPF and HF-NL were done using the
Mann-Whitney test. A P value of <0.05 was considered
significant.

Results
Baseline and stimulated COX-2 activity in HF-IPF and 
HF-NL
Unstimulated eicosanoid production was similar in both
HF-IPF and HF-NL (Fig. 1, a-d). When fibroblasts were
stimulated with IL-1β there was a significant and similar up-
regulation of PGE2 production in both HF-IPF and HF-NL
(28.35 [range: 9.09–89.09] versus 17.12 [8.58–29.33]
ng/106cells/30 min, respectively; P = 0.25; [Fig. 1a]). IL-
1β-stimulated production of TXB2 (stable metabolite of the
active TXA2), PGF2α, and 6-keto-PGF1α (stable metabolite
of PGI2) increased modestly in every case, except TXB2
production by HF-NL, which decreased (0.75 [0.15–2.58]
ng/106 cells/30 min at baseline versus 0.61 [0.21–1.64]
ng/106 cells/30 min with IL-1β stimulation) (Fig. 1b). Re-
sults of PGE2 production were similar when experiments
were conducted in serum free media conditions (results not
shown).

IL-1β stimulated TXB2 production was significantly greater
in HF-IPF (1.92 [1.27–2.57] ng/106 cells/30 min) than in
HF-NL (0.61 [0.21–1.64] ng/106 cells/30 min; P = 0.007)
(Fig. 1b); baseline TXB2 production was not significantly
different between the two cell groups (1.73 [0.77–2.53]
versus 0.75 [0.15–2.58] ng/106 cells/30 min, in HF-IPF
and HF-NL, respectively; P = 0.17 [Fig. 1b]). Because
PGI2 and TXA2 have opposing effects in vivo, we calculat-
ed the ratio of their metabolites (6-keto-PGF1α:TXB2) and
found a significantly lower ratio in HF-IPF at baseline (0.08
[0.04–0.52] versus 0.12 [0.11–0.89] in HF-IPF and HF-
NL, respectively; P = 0.028) and a similar trend under stim-
ulated conditions (0.24 [0.05–1.53] versus 1.08 [0.51–
3.79] in HF-IPF and HF-NL, respectively; P = 0.09 [Fig. 2]).

Baseline and stimulated COX-2 expression
Western blot in unstimulated fibroblasts showed no detect-
able COX-2 protein in either group of cells, while IL-1β sig-
nificantly induced COX-2 to a similar degree in IPF and
normal lung fibroblasts (Fig. 3). Northern blot showed min-
imal COX-2 mRNA in unstimulated cells and significant up-
regulation of COX-2 mRNA expression when stimulated
with IL-1β in both HF-IPF and HF-NL (Fig. 4).

Discussion
Several factors modulate fibroblast proliferation and colla-
gen production, including mitogenic cytokines (e.g., trans-
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forming growth factor β [TGFβ], platelet-derived growth
factor [PDGF], basic fibroblast growth factor [bFGF]), ei-
cosanoids (i.e., PGE2, TXB2, and PGI2), and antifibrogenic
cytokines (e.g. IFN-γ) [1–3]. It is very likely that a complex
interaction among these factors exists in the tissue repair
process, and it is possible that pathologic fibrosis, as in IPF,
results from phenotypical alterations in fibroblasts that af-
fect the "normal" interaction of these factors.

Our results show that stimulation of primary cultures of hu-
man lung fibroblasts with the proximal cytokine IL-1β upreg-
ulates COX-2 protein and mRNA expression to a similar
degree in normal and IPF fibroblasts. TXA2 production
tended to be greater in IPF than in normal fibroblasts at
baseline; when stimulated with IL-1β this difference be-
came statistically significant. The ratio of PGI2 to TXA2 me-
tabolites was lower in IPF fibroblasts at baseline and with
IL-1β stimulation. The above results suggest that a de-

creased PGI2:TXA2 ratio could be a phenotypic alteration
present in IPF fibroblasts, resulting in a loss of their capac-
ity to autoregulate proliferation and extracellular matrix pro-
duction.

The effects of PGs on cell proliferation and collagen pro-
duction have been widely studied in different cell types
[13–17,26]. TXA2 has been studied extensively because of
its apparent role in atherosclerosis, due to its prothrombot-
ic and mitogenic activities on vascular smooth muscle cells
[15,16]. These mitogenic effects are potentiated by growth
factors [15,16,27,28]. In vascular smooth muscle cells
TXA2 stimulates synthesis of bFGF and increases the ex-
pression of the proto-oncogenes c-fos, c-myc, and egr-1,
which are associated with entry into the cell growth cycle
[15]. In addition, TXA2 increases proliferation of fibroblasts
[13] and smooth muscle-like glomerular mesangial cells
[14].

Figure 1

Baseline and IL-1β-stimulated prostaglandin production. IPF lung fibroblasts (HF-IPF) (n = 6) and normal human lung fibroblasts (HF-NL) (n = 5)
were incubated with or without IL-1β (2.5 ng/ml) for 24 hours. At this time culture media was replaced with media containing arachidonic acid (30
µM) and fibroblasts were incubated for 30 min. A profile of COX-2-dependent eicosanoid products (PGE2 [a], TXB2 [b], PGF2α [c], and 6-κ-PGF1α
[d]) was measured from the supernatant by gas chromatography/mass spectrometry and expressed as median production in ng/106 cells/30 min,
with their respective range included in parenthesis.
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On the other hand, PGI2 decreases vascular smooth mus-
cle cell proliferation and collagen and glycosaminoglycane
synthesis, via activation of adenylyl cyclase and subse-
quent production of cAMP [17]. Betaprost, an analog of
PGI2, decreases procollagen I and III mRNA expression in
cardiac fibroblasts [18]. These effects may counteract the
profibrotic effects seen with TXA2 and it is possible that an
alteration of a "normal" physiologic balance between PGI2
and TXA2 could increase tendency towards fibrogenesis.

It is important to mention that our experiments were con-
ducted at similar passage levels (passage 6 to 8) in both
groups, since senescence of fibroblasts is associated with
a shift from the biosynthesis of PGI2 to TXA2[24,25]. It is
possible that the difference seen in our study between HF-
IPF and HF-NL could result from comparing fibroblasts of
different ages. HF-IPF might have been harvested from fi-
brotic lesions where fibroblasts had previously undergone
a greater number of cell divisions than HF-NL, obtained
from nonfibrotic lungs. Although this is a possibility, the
age-related shift in PG production has only been shown at
very high cell passages and has not been documented in
vivo.

We also found that both HF-IPF and HF-NL had similar
PGE2 production at baseline, and a similar increase when
stimulated with IL-1β. PGE2 can decrease fibroblast prolif-
eration and collagen synthesis, and increase collagen deg-
radation [5–8].

Recent reports suggesting decreased COX-2 expression
and PGE2 production in IPF fibroblasts have received sig-
nificant attention [12,20,21]. In our study we found that
both COX-2 protein expression and PGE2 production were
upregulated to a similar degree in IPF and normal lung fi-
broblasts. We believe that differences in methodology and
patient selection may explain the discrepancies with other
studies. Vancheri and collaborators [20] found that TNF-α-
stimulated fibrotic lung fibroblasts had decreased COX-2
expression and PGE2 production, but they further showed
that these findings were a result of decreased expression
of TNF-α receptors. The latter finding would argue against
a primary defect in COX-2 expression, since no other stim-
ulus, other than TNF-α, was tested. In another study, Keer-
thisingam et al.[21] reported that fibrotic lung fibroblasts
had decreased COX-2 expression and PGE2 production in
response to TGFβ stimulation. This study differed from ours
in that a different stimulus was used. Of significance is the
fact that the COX-2 gene is known to be NF-κB depend-
ent, and IL-1β, but not TGFβ, is a potent inducer of NF-κB
activation. Hence, the pathway involved in the induction of
the COX-2 gene by IL-1β and TGFβ may be different. Fur-
thermore, a significant proportion of the fibroblasts used in
the study by Keerthisingam et al.[21] were obtained from
patients with systemic sclerosis, which makes their fibrob-
last population more heterogeneous.

Wilborn et al.[12] also reported a decreased production of
PGE2 by IL-1β-stimulated IPF fibroblasts, due to de-
creased COX-2 expression [12]. There is a possibility that
patient selection may have differed between the two stud-
ies. However, we feel certain that the diagnostic accuracy
of our patient population was high, due to the fact that 5 out
of a total of 7 IPF subjects included in our study underwent
lung transplantation with confirmatory pathology results
consistent with IPF. The other 2 subjects had biopsy-prov-
en IPF. In addition, our results were similar when comparing
lung fibroblasts obtained from 5 subjects with advanced
stage IPF with those of 2 subjects at an earlier stage of their

Figure 2

Baseline and IL-1β-stimulated 6-κ-PGF1α:TXB2 ratio expressed as
median. IPF lung fibroblasts (HF-IPF) (n = 6) and normal human lung
fibroblasts (HF-NL) (n = 5) were incubated with or without IL-1β (2.5
ng/ml) for 24 h. At this time culture media was replaced with media
containing arachidonic acid (30 µM) and fibroblasts were incubated for
30 min. A significantly decreased ratio was observed at baseline in HF-
IPF compared to HF-NL (P = 0.028) and a similar trend under stimu-
lated conditions (P = 0.09).

0

0.3

0.6

0.9

1.2

HF-IPF
HF-NL

Baseline IL-1β

*

6-κ-PGF1α:
TXB2 ratio

(0.04 –
0.52)

(0.11 –

0.89)

(0.05 –
1.53)

(0.51 –
3.79)

Figure 3

COX-2 western blot analysis. HF-IPF (n = 4) and HF-NL (n = 3) were
incubated with or without IL-1β (2.5 ng/ml) for 24 hours and whole cell
protein extracts were subjected to western blot analysis. The above gel
is a representative of a total of three with similar results.
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disease, who had received no therapy. Although the rea-
sons for our different results are unclear, the fact that we
found similar COX-2 expression and PGE2 production in
normal and IPF lung fibroblasts suggests that loss of COX-
2 expression is not a universal characteristic of fibroblasts
cultured from the lungs of subjects with IPF.

Conclusion
We have found that fibroblasts cultured from normal and
IPF human lungs have a significant and similar induction of
the COX-2 enzyme when stimulated with IL-1β, but that IPF
fibroblasts produced more thromboxane and had a signifi-
cantly lower prostacyclin:thromboxane ratio. We hypothe-
size that the lower PGI2:TXA2 ratio seen in HF-IPF may be
a phenotypic alteration that plays a role in the pathogenesis
of IPF.

Abbreviations
COX = cyclooxygenase; HF = human fibroblasts; NL = normal lungs;
IPF = idiopathic pulmonary fibrosis; IFN = interferon; IL = interleukin; PG
= prostaglandin; TX = thromboxane; PGI2 = prostacyclin.
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Figure 4

Northern blot analysis of RNA extracted from cell lysates of HF-IPF and
HF-NL incubated with or without IL-1β (2.5 ng/ml) for 24 hours.
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