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Abstract

Background: Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate
(NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important
role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary
fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS
system in pulmonary fibrosis by using the mice lacking all three NOS isoforms.

Methods: Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS−/−) mice were administered
bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of
the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the
effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS−/− mice with BLM-induced
pulmonary fibrosis.

Results: The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid
were the most severe/highest in the n/i/eNOS−/− mice. Long-term treatment with the supplemental NO donor in
n/i/eNOS−/− mice significantly prevented the progression of the histopathological findings and the increase of the
collagen content in the lungs.

Conclusions: These results provide the first direct evidence that a lack of all three NOS isoforms led to a
deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO
and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis.
Introduction
Pulmonary fibrosis is an interstitial lung disease charac-
terized by chronic inflammation and progressive fibrosis
of the pulmonary interstitium (alveolar walls and septa,
perivascular, perilymphatic and peribronchiolar connect-
ive tissues) [1]. It is believed that lung inflammation ini-
tiates lung fibrosis, however, the etiological mechanism
of this disease has not yet been fully elucidated [2].
Nitric oxide (NO) is gaseous free radical, and is formed

from its precursor, L-arginine, by a family of NO synthases
(NOSs) with stoichiometric production of L-citrulline [3].
NO plays an important role in maintaining respiratory
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homeostasis [4,5]. There are three distinct isoforms of
NOS, two of which are constitutive NOSs known as neur-
onal NOS (nNOS) and endothelial NOS (eNOS), and
other is inducible NOS (iNOS). The expression of consti-
tutive NOSs (nNOS and eNOS) has been observed in vari-
ous types of pulmonary cells. For example, nNOS is
expressed in neuronal cells (ganglions, trachea and bron-
chi), and eNOS is expressed in vascular endothelial cells
and type ІІ alveolar epithelial cells in humans [4,5]. On
the other hand, the expression of iNOS has not been re-
ported in quiescent cells in healthy subjects, but there
have been reported that it is expressed in the airway and
the lung parenchyma following stimulation by microbial
endotoxins and certain proinflammatory cytokines [4,5].
Free radicals, including NO, play an important role in

the development of pulmonary fibrosis [6]. In fact, in-
creases in the expression of these NOSs in the lungs,
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and the plasma NOx (nitrite plus nitrate) level, a marker of
NO production, have been reported in patients with pul-
monary fibrosis [7-9]. The roles of the NOS system in the
lungs have been evaluated using several types of animal
models, and eNOS has been reported to exert a protective
role in pulmonary fibrosis [10,11]. Conflicting results have
been reported with regard to iNOS, with some studies
showing pathogenic [12-14] and protective [15,16] roles
for the enzyme in pulmonary fibrosis. However, because of
the different roles of each NOS and the compensatory in-
teractions among these different NOSs [3,17], the assess-
ment of the roles of NO and the NOSs themselves is
difficult, and the roles of the entire NO and NOS system in
pulmonary fibrosis remain to be fully elucidated.
Tsutsui et al. have developed a mouse model in which

all three NOSs were completely deleted [3,17], and these
triple NOS knockout (n/i/eNOS−/−) mice demonstrated
less than 3% of the normal level of NOx [17]. The authors
also reported that n/i/eNOS−/− mice are indistinguishable
from wild-type (WT) mice in terms of phenotype and de-
velop normally with a standard increase in body weight.
However, they also documented that n/i/eNOS−/− mice
are significantly hypertensive compared with WT mice
and display characteristics consistent with those of
nephrogenic diabetes insipidus [17].
In this study, we investigated the essential roles of NO

and the NOS system in a bleomycin (BLM)-induced pul-
monary fibrosis model using the n/i/eNOS−/− mice.

Materials and methods
Animals
This study was reviewed and approved by the Ethics
Committee of Animal Care and Experimentation, University
of Occupational and Environmental Health, Japan, and
was carried out according to the Institutional Guidelines
for Animal Experimentation and the Law (No. 105) and
Notification (No. 6) of the Japanese Government. The
investigation conforms to the Guide for the Care and
Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85–23, revised
1996). Experiments were performed in seven or eight-
week-old male WT (C57/B6) (Kyudo, Co., Ltd., Tosu,
Japan), nNOS−/−, iNOS−/−, eNOS−/− and n/i/eNOS−/−

mice weighing 20–25 g [17]. The mice were maintained
on a regular diet (CE-2, CLEA Japan, Inc., Tokyo, Japan).

Animal treatment
Mice were divided into two experimental groups: a
BLM-treated group and a control group. BLM (Nippon
Kayaku, Tokyo, Japan) was dissolved in 200 μl of normal
saline (NS) and administered intraperitoneally at a dose
of 8.0 mg/kg/day for 10 consecutive days. For controls,
age-matched mice received an identical volume of NS.
In the experiment in which the effect of a NO donor on
BLM-induced pulmonary fibrosis was examined, the fol-
lowing three groups were studied: WT mice receiving
regular drinking water, n/i/eNOS−/− mice receiving
drinking water and n/i/eNOS−/− mice receiving isosor-
bide dinitrate (ISDN, 0.6 mg/dl, Eisai Co., Ltd., Tokyo,
Japan) in drinking water from three days before starting
BLM administration until sacrifice [18].

Histopathological evaluation
Two weeks after the last administration of BLM, the body
weights of the mice were recorded, and the mice were
sacrificed by exsanguination by cutting the axillary artery
under deep anesthesia (sodium pentobarbital, 50 mg/kg,
i.p.). The left lungs were removed via a midline incision,
fixed in 15% formalin neutral buffer solution (Wako,
Osaka, Japan) and embedded in paraffin. Then 3-μm sec-
tions of embedded tissues were stained with hematoxylin-
eosin (HE) and Masson trichrome. The fibrotic area was
calculated by microscopy in Masson trichrome-stained
sections using an image analysis (BIOREVO BZ-9000 and
BZ-H2C; Keyence, Japan), as described previously [19]
(see Additional file 1).

Immunohistochemistry
The immunological detection of macrophages and fibroblasts
in the lungs was performed using a rat anti-mouse MAC-2
monoclonal antibody (1:500; Cedarlane Laboratories Ltd,
Burlington, ON, Canada) for detecting macrophages,
and a monoclonal mouse anti-human smooth muscle
actin (α-SMA) antibody (1:150; Dako Cytomation Co,
Tokyo) for the detection of fibroblasts [20]. In addition,
the immunological detection of connective tissue growth
factor (CTGF) and collagen I was performed using
rabbit anti-mouse CTGF polyclonal antibodies or colla-
gen I polyclonal antibodies (Abcam, Inc., Cambridge,
Mass., USA), according to the manufacturer’s protocol
(see Additional file 1).

Collagen assay
We measured the collagen content in the right lungs of
the mice at two weeks after the last administration of
BLM using the Sircol Collagen Assay kit (Biocolor Ltd,
UK), as reported previously [21] (see Additional file 1).

Bronchoalveolar lavage
The bronchoalveolar lavage (BAL) was obtained by can-
nulating the trachea with a 20-gauge catheter. After
counting the cell numbers in the BAL fluid (BALF), the
cells were cytospun and stained with Diff-Quick for cell
classification (see Additional file 1). The cell-free super-
natants were stored at −80°C until further analysis. The
total protein concentration was also measured using a
BIO-RAD Protein Assay Kit ІІ (500-0002JA, Hercules,
CA), according to the manufacturer’s protocol.
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Quantitative determination of IL-6, IL-1β, TNF-α, IFN-γ,
CCL-2 and active TGF-β1
The concentrations of murine interleukin (IL)-6, IL-1β,
tumor necrosis factor (TNF)-α, interferon (IFN)-γ, CC
chemokine ligand 2 (CCL-2) and active tissue growth
factor-β1 (TGF-β1) in the BALF were determined using
ELISA kits (R&D Systems, Minneapolis, MN) according
to the manufacturer’s protocol.

Real-time polymerase chain reaction
Total RNA was extracted from homogenized right lung
tissue using the Isogen reagent (Nippon Gene, Tokyo,
Japan), and was reverse-transcribed. Quantification of
the expression level of each mRNA (IL-6, IL-1β, TNF-α,
IFN-γ, CCL-2, TGF-β1, CTGF, collagen I and GAPDH
mRNA) was performed by real-time quantitative poly-
merase chain reaction on an ABI prism 7000 sequence
detection system (Applied Biosystems, Foster City, CA)
(see Additional file 1).

NOx measurement
Blood samples were obtained from the right axillary artery
at the time of sacrifice, and were immediately centrifuged
at 3500 rpm at 4°C for 10 min, and the supernatants were
stored at −80°C until they were analyzed. The plasma
NOx concentrations were assessed by the Griess method
using the ENO-20 NOx analysis system (Eicom, Kyoto,
Japan), as reported previously [17,18].

Statistical analysis
The statistical analyses were performed using the SPSS
software package (version 19), and a value of P < 0.05
was considered to be statistically significant. In addition,
the Mann–Whitney U (non-parametric) test was used
for all statistical analyses.

Results
Body weight changes
The average baseline body weights of the mice with various
genotypes did not differ significantly (WT, 23.3 ± 0.6 g;
nNOS−/−, 23.8 ± 0.9 g; iNOS−/−, 23.2 ± 0.5 g; eNOS−/−,
23.9 ± 1.7 g and n/i/eNOS−/−, 22.8 ± 0.6 g). The ratios of
body weights at the different times/initial body weight in
all of the genotype groups are shown in Figure 1. The WT,
single NOS−/− mice, and n/i/eNOS−/− mice exhibited a loss
of body weight at the last administration of BLM (day 10).
The WT and single NOS−/− mice regained their body
weight by two weeks after the last administration of BLM
(day 24), whereas significant body weight loss was still ob-
served in the n/i/eNOS−/− mice.

BLM-induced pulmonary fibrosis
A histological evaluation revealed no changes in any of
the genotype groups in the NS-treated mice (Figure 2A).
In contrast, fibrotic changes were obvious in all of the
mice at two weeks after the last administration of BLM.
The extent of fibrotic changes was the greatest in the
n/i/eNOS−/− mice (Figure 2B). On the other hand, there
were minimal changes in the WT and single NOS−/−

mice, whereas the eNOS−/− mice exhibited more pul-
monary cellular infiltration and collagen deposition than
the WT mice according to the histological findings
(Figure 2B). A quantitative image analysis indicated that
a significant increase in the pathological fibrotic tissue
area was seen only in the n/i/eNOS−/− mice, and no sig-
nificant differences were observed among the WT and
single NOS−/− mice (Figure 2C). Furthermore, the colla-
gen assay demonstrated that the amount of collagen was
the greatest in the n/i/eNOS−/− mice, while there were
no significant differences among the WT and single
NOS−/− mice (Figure 2D).

Total cell counts and differential cell analysis of the BALF
The total cell counts and differential cell counts in the
BALF were analyzed at two weeks after the last adminis-
tration of BLM. The mean total cell counts obtained
from n/i/eNOS−/− mice were significantly higher than
those of all of the other genotypes (Figure 3A), and the
cell counts of lymphocytes obtained from n/i/eNOS−/−

mice were also significantly higher than those of WT
and single NOS−/− mice (Figure 3C). On the other hand,
there were no significant differences between the cell
counts of macrophages in any of the genotype groups
(Figure 3B). The total protein concentration in the n/i/
eNOS−/− mice was also significantly higher than that of
the WT and single NOS−/− mice (Figure 3D).
In addition, there were no significant changes in the

total cell counts and macrophage counts between WT
and single NOS−/− mice (Figure 3A and B), but the cell
counts of lymphocytes in the iNOS−/− mice was signifi-
cantly lower than that of the WT mice (Figure 3C). The
total protein concentration in the nNOS−/− and iNOS−/−

mice was also significantly lower than that of the WT
mice (Figure 3D).

Quantitative analysis of the protein levels and the mRNA
expression of pro-inflammatory cytokines
The protein levels of IL-6 and TNF-α were significantly
higher in the n/i/eNOS−/− mice than in the WT mice at
two weeks after the last administration of BLM (Figure 4A
and C). The expression of IL-6, IL-1β and TNF-α mRNA
in the n/i/eNOS−/− mice was also significantly higher than
that in the WT mice (Figure 5A-C) at two weeks after the
last administration of BLM. On the other hand, the ex-
pression of IFN-γ mRNA in the n/i/eNOS−/− mice was
significantly lower than that of the WT mice, although the
protein level of IFN-γ demonstrated no significant change
(Figures 4D and 5D). There were no obvious differences



Figure 1 Temporal changes in the body weight in a pulmonary fibrosis model at two weeks after BLM-treatment (n = 5-7). The changes
in the ratios of the body weights at specific times/initial body weight from the start of BLM administration to the time of sacrifice (day 4, 10, 17
and 24) are shown. *P < 0.05 vs. BLM-treated WT mice.
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in the protein (Figure 4A-D) or mRNA (Figure 5A-D)
levels between the WTand single NOS−/− mice.

Quantitative analysis of the protein level and the mRNA
expression of CCL-2
The protein level of CCL-2 (Figure 4E) and the expres-
sion of CCL-2 mRNA (Figure 5E) were significantly
higher in the n/i/eNOS−/− mice compared to the WT
mice at two weeks after the last administration of BLM.
The protein level of the iNOS−/− mice was significantly
lower than that of the WT mice. (Figure 4E), but there
weren’t significant differences in the mRNA levels be-
tween the WT and single NOS−/− mice (Figure 5E).

Quantitative analysis of the active form of TGF-β1 protein
and the expression of TGF-β1 mRNA
The protein level of the active form of TGF-β1 of the
BALF (Figure 4F) and the expression of TGF-β1 mRNA
of the lung (Figure 5F) were significantly higher in the
n/i/eNOS−/− mice than in the WT mice at two weeks
after the last administration of BLM. Comparing the
WT and single NOS−/− mice, the protein and mRNA
levels were significantly lower in the iNOS−/− mice than
in the WT mice (Figures 4F and 5F).

Immunochemical expression and the mRNA expression of
growth factor
Figure 6A shows representative immunohistochemical
findings for growth factor. The expression of CTGF and
collagen I was higher in the n/i/eNOS−/− mice than in the
WT or single NOS−/− mice. And the expression of CTGF
and collagen I mRNA in the n/i/eNOS−/− mice were sig-
nificantly higher than those in the WT mice (Figure 6B
and C) at two weeks after the last administration of BLM.
Comparing the WTand single NOS−/− mice, mRNA levels
of collagen I in the iNOS−/− mice were significantly lower
than in the WT mice (Figure 6B and C).

Effects of long-term supplementation of a NO donor
The serum NOx levels were markedly reduced in both
NS- and BLM-treated n/i/eNOS−/− mice compared with
those in the NS-treated WT mice (Figure 7C). Long-term
oral administration of ISDN significantly restored the
NOx levels in both NS- and BLM-treated n/i/eNOS−/−

mice up to the levels observed in NS-treated WT mice
(Figure 7C). Additionally, the long-term treatment with
ISDN significantly prevented the progression of the histo-
logical findings and the increase in collagen content in the
n/i/eNOS−/− mice (Figure 7A, B, and D).

Discussion
In the present study, we evaluated the roles of NO and
the NOS system in pulmonary fibrosis by using mice
lacking all three NO synthases, n/i/eNOS−/− mice, and
showed that the lack of all NOS led to a deterioration of
the fibrotic changes in the lungs of mice with BLM-
induced pulmonary fibrosis. In addition, these findings
were prevented by long-term treatment with a NO
donor, ISDN. This is the first report to show that NO is
an important factor in the progression of pulmonary fi-
brosis, and that NO has protective effects against BLM-
induced pulmonary fibrosis.
With regard to the roles of NO in the progression of

fibrosis, there have been several reports showing the
protective roles of NO in cardiac [22] and renal [23] fi-
brosis using non-selective NOS inhibitors in mouse



Figure 2 The n/i/eNOS−/− mice showed a deterioration of lung fibrosis in a pulmonary fibrosis model at two weeks after BLM-treatment.
(A) Hematoxylin-eosin staining in normal saline (NS)-treated mice. Scale bar = 100 μm. (B) Hematoxylin-eosin staining, Masson-trichrome staining,
α-SMA staining, MAC-2 staining in BLM-treated mice. Scale bar = 100 μm. (C) The fibrotic tissue area (blue-stained). (D) The collagen content in lung
tissue. White and black bars indicate NS- (n= 3) and BLM- (n = 5) treated mice, respectively. *P < 0.05 vs. BLM-treated WT mice.
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Figure 3 The n/i/eNOS−/− mice showed an increase in the number of inflammatory cell in the bronchoalveolar lavage fluid in a
pulmonary fibrosis model at two weeks after BLM-treatment. (A) The total cell counts. (B) The macrophage cell counts. (C) The lymphocyte
cell counts. (D) The total protein concentrations. White and black bars indicate normal saline- (n = 3) and BLM-(n = 5) treated mice, respectively.
*P < 0.05 vs. BLM-treated WT mice.
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models. So far, a non-selective NOS inhibitor has been
reported to worsen the mortality in a BLM-induced
murine pulmonary fibrosis model [10] and accelerated
pulmonary granuloma formation in a purified protein
derivative murine model [24], another model of pulmon-
ary fibrosis. However, because of the non-specificity of
these inhibitors [25,26], it is difficult to evaluate the es-
sential roles of NO. Therefore, little has been known
about the functions and roles of NO itself in pulmonary
fibrosis. Concerning the role of each NOS isoform in
pulmonary fibrosis, the protective effects of pulmonary
fibrosis in eNOS transgenic mice [10] and the deterior-
ation of fibrosis in eNOS−/− mice [11] have also been re-
ported. The inhibition of iNOS has been reported to
suppress pulmonary fibrosis in murine model using
iNOS−/− mice [12] and mice treated with a selective
iNOS inhibitor [12-14], but there have been several con-
flicting reports that iNOS−/− led to a deterioration of the
progression of pulmonary fibrosis [15,16]. It has been re-
ported that the expression of nNOS was unchanged in a
BLM-inhalation rat model [27], and the role of nNOS in
pulmonary fibrosis has not been fully understood.
Therefore, the role of NO in pulmonary fibrosis has

been controversial, mainly because each isoform has dif-
ferent functions and compensatory interactions with the
other isoforms [3,17]. The n/i/eNOS−/− mice provide
one way to resolve the former problems of the animal
models using single NOS−/− mice or various NOS inhibi-
tors, and we believe this murine model is an important
tool for understanding the essential roles of NO [18,28].
NO and the NOS system have been suggested to have

both beneficial and deleterious effects on the respiratory
system [4]. These results are confusing with respect to
understanding the essential role of NO. In the present
study, the BLM-treated WT mice demonstrated in-
creased NOx concentrations as well as a deterioration of
fibrotic changes compared with that observed in the NS-
treated WT mice, as well as increased plasma NOx
levels have been reported in patients with pulmonary fi-
brosis [9]. While the BLM-treated n/i/eNOS−/− mice,



Figure 4 The n/i/eNOS−/− mice were associated with an increase in the protein levels of proinflammatory cytokines, CC chemokine
ligand 2 (CCL-2), and the tissue growth factor-β1 (TGF-β1) in a pulmonary fibrosis model at two weeks after BLM-treatment in BALF
(n = 5). (A) IL-6 protein. (B) IL-1β protein. (C) TNF-α protein. (D) IFN-γ protein. (E) CCL-2 protein. (F) Active form of TGF-β1. *P < 0.05 vs.
BLM-treated WT mice.
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despite the lack of NOx, exhibited a significant deterior-
ation of fibrotic changes compared to the BLM-treated
WT mice. In addition, the poor factors observed in the
BLM-treated n/i/eNOS−/− mice were prevented via
ISDN treatment by increasing the NOx levels up to that
observed in the NS-treated WT mice. Therefore, we be-
lieve that strongly reduced concentrations of NO may be
associated with the progression of BLM-induced pul-
monary fibrosis and that an appropriate NO concentra-
tion is required for respiratory homeostasis.
In addition, a significant body weight loss has been re-
ported in parallel with a deterioration of pulmonary fi-
brosis in a BLM-treated mouse model [29]. In the
present study, the BLM-treated n/i/eNOS−/− mice also
exhibited a significant protracted course of body weight
loss compared with the WT and single NOS−/− mice.
TGF-β1 is an important pathogenic factor involved in

a variety of fibroproliferative disorders, including pul-
monary fibrosis [1,13], and there have been several
in vitro reports that showed an increased expression of



Figure 5 The mRNA expression of pro-inflammatory cytokines, CC chemokine ligand 2 (CCL-2), and the tissue growth factor-β1
(TGF-β1) in the lung in a pulmonary fibrosis model at two weeks after BLM-treatment (n = 5). (A) IL-6 mRNA expression. (B) IL-1β mRNA
expression. (C) TNF-α mRNA expression. (D) IFN-γ mRNA expression. (E) CCL-2 mRNA expression. (F) TGF-β1 mRNA expression. *P < 0.05 vs.
BLM-treated WT mice.
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NO and a subsequent decrease of TGF-β1 due to the in-
crease of NO production [13,30]. Shibata et al. reported
an elevation of cardiac TGF-β1 expression in n/i/eNOS−/−

mice [31], and we similarly observed upregulation of
the protein levels and mRNA of pulmonary TGF-β1 in
BLM-treated n/i/eNOS−/− mice in this study. It is well
known that TGF-β1 promotes the production of CTGF
[32] and collagen I [33], which leads to the progression
of pulmonary fibrosis. The subsequent increased pro-
duction of CTGF and collagen I was noted in the BLM-
treated n/i/eNOS−/− mice in this study. From these re-
sults, with respect to the mechanisms underlying the
antifibrotic activity induced by the absence of NO, the
TGF-β1/CTGF pathway is one possible pathway in-
volved in this process. CTGF is considered to play a
critical role in the onset of fibrosis as a downstream me-
diator of TGF-β1 [34], and the downregulation of the
expression of CTGF mRNA by NO donors in rat
mesangial cells has been previously reported [34]. NO
has also been reported to suppress the expression of
CTGF by inhibiting Smad-dependent TGF-β signaling
[35]. Taken together, the deterioration of pulmonary fi-
brosis in the BLM-treated n/i/eNOS−/− mice observed
in this study may be explained by the above mechanism,



Figure 6 The n/i/eNOS−/− mice exhibited an increased production of CTGF and collagen I. (A) Immunostaining for CTGF and collagen I in
the lungs of the WT and n/i/eNOS−/− mice. Scale bar = 100 μm. (B) CTGF mRNA expression (n = 5). (C) Collagen I mRNA expression (n = 5).
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although further studies are needed to clarify the mech-
anisms underlying the antifibrotic activity of NO in the
setting of fibrotic lung diseases.
It is well known that increased expression levels of the

proinflammatory cytokines IL-6, IL-1β and TNF-α and
decreased expression levels of the anti-fibrotic cytokine
IFN-γ are involved in the pathogenesis and progression
of pulmonary fibrosis [36,37]. Our present results are
consistent with the findings of former reports, although
there were no significant differences in the protein levels
of IL-1β or IFN-γ. Considering the relationships between
NO and the above proinflammatory cytokines, NO
has been reported to be a potent inhibitor of the proin-
flammatory cytokine production induced by alveolar
macrophages [38,39]. Therefore, the increased levels of
pulmonary inflammatory cytokines (IL-6, IL-1β and
TNF-α) observed in the BLM-treated n/i/eNOS−/− mice
in the present study may also be explained by an in-
crease in proinflammatory cytokine production stimu-
lated by alveolar macrophages. Therefore, we speculate
that alveolar macrophages are potent targets in the de-
terioration of pulmonary fibrotic changes associated with
the absence of NO.
CCL-2 was upregulated in BLM-treated n/i/eNOS−/−

mice compared to BLM-treated WT mice, and therefore,
the CCL-2/NO pathway was considered as an alternative
pathway leading to BLM-induced pulmonary fibrosis in
this study. CCL-2, also known as monocyte chemotactic
protein-1 (MCP-1), belongs to the C-C chemokine
superfamily of small proteins, and is considered to be a
potent chemoattractant for monocytes/macrophages.
Several reports have demonstrated that CCL-2 plays an
important role in the development of pulmonary inflam-
mation and fibrosis in both animal models [40] and hu-
man studies [41]. Previous in vitro and in vivo studies
have shown that endothelial NO synthesis was inhibited
by a non-selective NOS inhibitor and this inhibition of
endothelial NO synthesis led to an increase in CCL-2
expression [42,43]. The production of TGF-β1 induced
by CCL-2 has also been reported in vitro [44], and the
promotion of TGF-β1 production may be explained by
the increased CCL-2 production in BLM-treated n/i/
eNOS−/− mice in this study.
In this study, the eNOS−/− mice treated with BLM

histopathologically exhibited more cellular infiltration
and collagen deposition than the WT mice, although the
findings of the quantitative evaluation of the fibrotic
areas and collagen deposition and the analyses of the
BALF did not differ significantly from those observed in
the WT mice. The protective effects of eNOS against
pulmonary fibrosis have been demonstrated in various
studies [10,11], and we believe that eNOS may also



Figure 7 The anti-fibrotic effects of long-term treatment with a NO donor in a pulmonary fibrosis model at two weeks after BLM-
treatment (n = 4-5). (A) Hematoxylin-eosin staining, Masson-trichrome staining. Scale bar = 100 μm. (B) The fibrotic tissue area (blue-stained).
(C) The serum NOx levels. White and black bars indicate normal saline (NS)- and BLM- treated mice, respectively. (D) The collagen content in
lung tissue. *P < 0.05 vs. the BLM-treated WT mice. #P < 0.05 vs. the BLM-treated n/i/e NOS−/− mice that received ISDN. †P < 0.05 vs. the
NS-treated mice.
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protect against the development of pulmonary fibrosis.
However, it was not possible to elucidate the role of each
NOS isoform in fibrotic changes compared to the WT
mice based on the results of this study. These results
were similar to the previous reports in models of carotid
artery ligation or a high-cholesterol diet [18,28]. Com-
pensatory mechanisms involving other NOSs in terms
of producing NO may explain these findings. Indeed,
Morishita et al. have revealed that the other NOSs are
highly expressed in the single NOS−/− and double NOS−/−

mice, and that NOx production is fairly well preserved
in mice of those genotypes [17]. These findings may
support the importance of using a murine model lack-
ing all three types of NOS when investigating the true
functions of NO.
In conclusion, we provide the first evidence that a lack

of all three NO synthases leads to the deterioration of fi-
brotic changes in BLM-induced pulmonary fibrosis in
mice. It is speculated that NO plays an important pro-
tective role in the pathogenesis of pulmonary fibrosis.
Additional file

Additional file 1: Detailed description of Materials and methods
section. Figure S1. Immunostaining for nNOS, iNOS, eNOS in the lung
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