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Abstract

Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D)
with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs’ surface tension function and for
the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary
collectins, have an important function in the host’s lung immune response; they act as opsonins for different
pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or

show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the
pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal
pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of
information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune
cells for the clearance of these pathogens and the role of surfactant proteins’ regulation during respiratory fungal
infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those
respiratory mycoses where the fungal infective propagules reach the lungs by the airways.
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Background

Pulmonary surfactant is a complex fluid that is composed
of phospholipids (90 %) and proteins (10 %). There are four
surfactant proteins (SP-A, SP-B, SP-C, and SP-D); each one
has different biological functions. SP-A and SP-D are
hydrophilic, whereas SP-B and SP-C are hydrophobic. SP-
B, SP-C, and SP-D are essential for the lungs’ surface ten-
sion function and are required for the organization, stability
and metabolism of lung parenchyma [1]. SP-A and SP-D
are known for their contribution to the host’s lung immun-
ity. Due to the role of SP-A and SP-D in the immune re-
sponse, they have been preferentially studied in infectious
diseases. The aim of this paper was to review the available
information concerning the correlation between the surfac-
tant proteins SP-A and SP-D and those respiratory fungal
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pathogens whose airborne infective propagules arrive at the
lungs producing a progressive pulmonary disease.

Review

Surfactant proteins are produced by different cell types,
and in the lung, the four types are synthesized by type II
pneumocytes [1]. SP-A and SP-D are also secreted by
non-ciliated bronchiolar cells, submucosal gland and
epithelial cells of other respiratory tissues, such as the
trachea and bronchi. In the lacrimal apparatus, ductal
epithelial cells are responsible for their production [2, 3].
Mucosal and glandular/ductal epithelial cells in the
gastrointestinal tract (salivary glands, esophagus, small
intestine, colon, pancreas, liver, and mesentery) produce
low levels of SP-A and SP-D [2, 3]. These proteins have
been found in sebaceous and sweat glands, where they
are synthesized by the ductal and glandular epithelium;
they are also found in the skin, but there is no evidence
of surfactant proteins’ RNA transcripts in cutaneous
cells [3]. SP-A and SP-D can be detected in both the
male and female genitourinary tracts (prostate, testis,
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bladder, kidney, and uterus, even in non-pregnant women),
and are apparently secreted by glandular and epithelial cells
[2, 3]. Significant levels of SP-D, which has an important
pro-atherogenic potential, were found in heart and brain
tissues, where they are produced by vascular endothelial
cells [3].

The chemical structure of SP-A and SP-D comprises
different subunits: the N-terminal non-collagenous do-
main, a collagenous region, the helical neck, and the C-
terminal carbohydrate recognition domain (CRD), each
one with different ligand binding affinities [3].

The genomic locus of human SP-A consists of two
functional genes, SFTPAI (SP-AI) and SFTPA2 (SP-A2),
and a pseudogene. This locus is situated on the long
arm of chromosome 10 and the two functional genes are
in opposite transcriptional orientation [4—6].

All mammalian species studied to date have a single-copy
gene, except from primates onward, where a gene duplica-
tion occurred that gave rise to SP-AI and SP-A2 genes; a
recent report revealed additional SP-A sequences in some
species, such as the opossum (three genes) and the chicken
(SP-A and SP-A-like gene) [4]. A number of alleles have
been characterized for each SP-A gene. The most com-
monly observed alleles for the SP-AI gene are 64, 6A2,
6A3, and 644, and those for the SP-A2 gene are 1A, 1A0,
1A1, 1A2, 1A3, and 1AS5. Splicing variation and/or polymor-
phisms at the 59 and 39 non-translated regions of these
alleles, respectively, point to regulatory differences [5].

Genetic studies have been conducted in human popula-
tions of adults, children, and newborns, where single nu-
cleotide polymorphisms, haplotypes, and other genetic
variants of SP-AI and SP-A2 genes have been associated
with acute and chronic lung diseases, like cystic fibrosis,
asthma, allergic rhinitis, and chronic obstructive pulmon-
ary disease [6]. Moreover, these human genetic variations
have been considered risk factors for infectious diseases
such as tuberculosis [7-9] and, for fungal infections in
particular, there are SP-AI and SP-A2 polymorphisms re-
lated to allergic bronchopulmonary aspergillosis [10].

The human SP-D locus is linked to the SP-A locus
and is located proximal to the centromere at approxi-
mately 80—-100 kb from the SP-A2 gene. Several poly-
morphisms for SP-D and an association between SP-D
alleles and lung diseases have also been identified [5].

SP-A and SP-D are classified in the C-type lectin family,
commonly known as “collectins”, because of their structure.
Collectins have a relatively high affinity for oligosaccharides,
which suggests that they are important determinants of
self/non-self recognition [11]. SP-A preferentially attaches
only to monosaccharides, in the following order of binding
preference: mannose, fucose, glucose, galactose, and N-
acetylglucosamine; in contrast, SP-D binds more avidly to
maltose, glucose, mannose, fucose, galactose, lactose, glu-
cosamine, and N-acetylglucosamine [12], and to complex
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carbohydrates on the surface of different cells [13, 14]. SP-
A stimulates the expression of the mannose receptor and
the scavenger receptor A on the surface of alveolar macro-
phages, but these mechanisms are not clear [15].

SP-A and SP-D bind different pathogens, such as viruses,
bacteria, fungi [6, 16, 17], and the nematode Schistosoma
mansoni [18], via their CRD, and act as opsonins to trigger
the mechanisms of the host’s innate immune response or,
in some cases, they display their own microbicidal activity
by increasing the permeability of the pathogen cellular
membrane [1, 3, 15]. Overall, SP-A and SP-D opsonized-
microorganisms (bacteria and fungi) enhance their attach-
ment to phagocytic cells (macrophages and neutrophils),
with subsequent pathogen clearance [3, 11].

Some interactions between collectins of the host’s defense
mechanisms and the pathogen are known. Pulmonary
collectins regulate cytokine and free radical productions,
according to their environment, and play a pro- or anti-
inflammatory role [3, 11]. Surfactant collectins inhibit T cell
proliferation. In particular, SP-A inhibits dendritic cell mat-
uration and SP-D stimulates antigen presentation by den-
dritic cells [15]. Furthermore, SP-A and SP-D possess direct
bactericidal and fungicidal activity, but the exact mecha-
nisms involved are still unknown [3, 11, 19]. It was de-
scribed that SP-A decreases the binding of bacterial
lipopolysaccharide (LPS) to the LPS-binding protein (LBP),
acting as a competitive inhibitor and avoiding the initiation
of the inflammatory cascade of LBP/CD14 [20]. However,
Gardai et al. [14] demonstrated the increase of proinflam-
matory mediators of the innate and adaptative immune re-
sponses through the induction of nuclear transcription
factors, kp (NFkp) and activator protein-1 (AP-1), by using
LPS-stimulated macrophages after SP-A or SP-D attach-
ment via their collagen regions to calreticulin/CD91 recep-
tor complex on the host’s macrophage surface. In contrast,
when the globular heads of these collectins bind to host’s
macrophages, an anti-inflammatory effect is generated
through a signal inhibitory regulatory protein o (SIRPa)
that activates the tyrosine phosphatase-1 (SHP-1), which
blocks src-family kinases and P38 MAP kinase signaling,
therefore suppressing proinflammatory mediators [14].
These dual inflammatory functions of SP-A and SP-D
could participate in the host’s immunological surveillance
mechanisms for different microorganisms.

The interaction of surfactant proteins with Toll-like re-
ceptors (TLRs) and TLR-associated molecules, such as
CD14, may be one mechanism for their inflammatory me-
diator function [11]. SP-A binds to the extracellular do-
main of TLR2 via its neck domain. The incubation of a
recombinant soluble form of TLR2 with SP-A reduced the
binding to bacterial peptidoglycan and the activation of
NFkp as well as TNF-a secretion by rat alveolar macro-
phages and U937 cells (a macrophage-like cell line) [21].
This finding suggests that direct interaction of SP-A with
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TLR-2 alters peptidoglycan-induced cell signaling, which
results in a decreased inflammatory response [15]. In con-
trast, SP-A also associates with MD-2, a TLR-4 accessory
protein and signaling molecule, and inhibits the binding
of LPS to TLR-4/MD-2 in HEK293 cells (a human embry-
onic kidney cell line), which would activate NFkf} whether
LPS had been attached to the TLR-4/MD-2 receptor com-
plex. Therefore, SP-A inhibits NFkf activation, explaining
an anti-inflammatory mechanism previously described in
vivo [15]. In regard to SP-D, it binds to the extracellular
domains of TLR-2 and TLR-4 through its CRD by a differ-
ent mechanism from those used in regular binding to
pathogen phosphatidylinositol and LPS [22].

In regard to the role of SP-A and SP-D surfactant pro-
teins in chronic lung diseases, including those produced
by pathogens, is unknown. However, it has been sug-
gested that the SP-D levels, in bronchoalveolar lavage
fluid and serum, can vary substantially in different pul-
monary conditions, which encourages the use of this
protein as a biomarker of lung disease or injury [3, 11].

Interaction of SP-A and SP-D with cytokines involved in
the defense to pathogens

The collectins SP-A and SP-D have an important partici-
pation in the host’s innate immune response, where they
interact with inflammatory cells and cytokines. This rela-
tionship has been described in different situations, such
as immunoregulation during pregnancy [3], lung trans-
plant rejection [23], pulmonary apoptotic cell clearance
[3], allergic responses produced by pollen or A. fumiga-
tus [3], and chronic inflammatory diseases [3, 24].

SP-A regulates macrophage function by diminishing
the kinase activity required for the production of proin-
flammatory cytokines; it also upregulates the expression
of IL-1P receptor, related to M-kinase (TLR-4 downre-
gulator). Thus, SP-A inhibits TNF-a and IL-6 produc-
tion, which is unleashed as a response to LPS [25]. In
Pseudomonas aeruginosa infection, SP-A knockout mice
show lower levels of IL-1 than do wild-type mice,
which suggest that SP-A induces IL-1B production
through the inflammasome pathway [26].

SP-A upregulates TLR-2 and TLR-4 transcription
and post-translational modifications during monocyte-
macrophage differentiation and downregulates Ikpa
factor (NFkp controller), which results in diminished
TNEF-a secretion in response to the binding of TLRs to
their respective ligands [27].

SP-A plays a critical role in the differentiation and pro-
duction of T regulatory cells (Treg), as described in SP-A
deficient mice, which revealed an altered Foxp3 expres-
sion and the reduced production of Treg CD25 " Foxp3*
cells. SP-A also augments 1L-2 and TGF- levels [28].

In regard to SP-D, an anti-inflammatory effect medi-
ated by IL-8 was detected after its binding to pollen
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particles, because this interleukin inhibits histamine dis-
charge from basophils, thereby antagonizing IgE produc-
tion in plasma B cells [29].

SP-D can compete with TNF-a in the proinflammatory
effects on macrophages and dendritic cells by inhibiting
partially this cytokine’s production; thus, TNF-a contributes
to an indirect increase in SP-D by inducing IL-13 [30].

It has been described that SP-D knockout mice infected
with C. neoformans displayed less eosinophil infiltration
and lower IL-5 levels in bronchoalveolar lavage fluid than
wild-type mice, suggesting a direct relationship between
the presence of this collectin and the response to this
pathogen [31].

Interaction of collectins with respiratory fungal

pathogens

The binding of SP-A and SP-D to a variety of opportun-
istic fungi results in the direct inhibition of fungal
growth and the enhancement of phagocytosis [3]. How-
ever, the downstream immune response elicited by sur-
factant proteins can also contribute to the establishment
of fungal infection and pathogenesis [3]. There are other
medically important opportunistic fungi that cause pul-
monary infections, such as Candida spp., which was not
considered in this review because it enters the lung via
hematogenous dissemination instead of the airway.

Aspergillus fumigatus

SP-A and SP-D surfactant proteins attach to A. fumigatus
conidia via a calcium-dependent receptor, which increases
phagocytosis and fungal destruction by neutrophils and al-
veolar macrophages [3, 32]; the fungal ligands recognized
by SP-A include two N-glycosylated glycoprotein antigens
(gp45 and gp55 kDa) secreted by A. fumigatus, which have
been recovered from culture filtrates and used for immu-
nodiagnosis of aspergillosis [32].

In a murine model of invasive pulmonary aspergillosis
the intranasal administration of exogenous SP-D, either
the purified human protein or a recombinant fraction
containing the homotrimeric neck and the CRD do-
mains (rSP-D), protected immunosuppressed mice from
a fatal inoculum of A. fumigatus conidia [33]. This same
experimental model was used by Singh et al. [34] and,
according to their findings, the addition of native or
recombinant SP-D reduced the fungal growth and in-
creased the TNF-a and IFN-y levels in murine lungs.
SP-D gene-deficient mice are more susceptible to
invasive pulmonary aspergillosis, whereas SP-A gene-
deficient mice acquire resistance to this disease [35],
which suggests that SP-A may facilitate the pathogenesis
induced by A. fumigatus. Genetic studies show that mu-
tations in the SP-A2 gene (G1649C, A1660G, and the
AGA allele) may increase susceptibility to Aspergillus-
mediated allergies [10, 36].
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Blastomyces dermatitidis

SP-D binds the B-glucan on the surface of B. dermatiti-
dis, thereby blocking the access of B-glucan-receptors on
alveolar macrophages to this molecule, which inhibits
TNE-a production. B. dermatitidis may utilize SP-D as a
strategy to reduce the host defense inflammatory reac-
tion by diminishing TNF-a stimulation; which could
favor the development of the disease [3, 37].

Coccidioides posadasii

SP-A and SP-D bind to coccidiodal antigens, but C. posa-
dasii infection disrupts the expression of the pulmonary
collectins, potentially enabling disease progression and pro-
moting fungal dissemination [3, 38]. The levels of pulmon-
ary surfactant collectins and phospholipids (measured by
ELISA and Stewart method, respectively) were decreased in
the lungs of mice infected intranasally with a lethal dose of
C. posadasii; however, the collectins and phospholipid
levels were normal in the lungs of C. posadasii-protected
mice after immunization with a formalin killed spherule
vaccine [38]. This study also assessed the concentration-
dependent binding of SP-A and SP-D to coccidioidal anti-
gens in vitro, and the findings sustained that pulmonary
collectins were involved in the phagocytosis of C. posadasii
by antigen presenting cells and in the downstream immune
regulation of the infected host. Regarding the surfactant
phospholipids, there is not sufficient information about
their role of in the host defense [38].

Cryptococcus neoformans

SP-A binds to both encapsulated and non-encapsulated
C. neoformans yeasts depending on the fungal concen-
tration, but it does not enhance acapsular C. neoformans
phagocytosis; this binding is calcium-dependent and can
be inhibited by mannose and glucose, but not by galact-
ose [39]. In a study on SP-A deficient and wild-type
mice using an intranasal C. neoformans infection model,
SP-A did not influence disease progression [40]. In con-
trast, SP-D agglutinates acapsular yeasts with a higher
affinity than SP-A [41, 42], increases the phagocytosis of
hypocapsular C. neoformans by murine macrophages
under in vitro and in vivo conditions [43, 44], enhances
fungal survival [44], and protects C. neoformans against
oxidative stress in an experimental murine model, which
facilitates the disease progression [43]. The ligands iden-
tified for SP-D are the capsular components glucuronox-
ylomannan and mannoproteinl [42].

Histoplasma capsulatum

Only a few studies have described the particular interaction
of H. capsulatum and surfactant proteins. McCormack et
al. [19] showed that exposing H. capsulatum yeasts to SP-A
and SP-D stimulated a dose-dependent decrease in [*H]leu-
cine incorporation, as revealed by a failure to grow on
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Ham’s F12 supplemented medium. This exposure increased
yeast permeability based on a leak of protein from the or-
ganism and enhanced the access of an impermeable sub-
strate of the intracellular alkaline phosphatase. This
mechanism is calcium-dependent, because calcium binding
produces conformational shifts in the CRD region of the
collectins, thus exposing charged or hydrophobic protein
molecules with biological functions, such as interacting
with membrane phospholipids or other surface compo-
nents, and disrupting membrane function [19]. However,
SP-A and SP-D did not inhibit the growth of macrophage-
internalized H. capsulatum vyeasts [19]. Besides, in this
study, the authors also assayed an intranasal infection with
H. capsulatum yeasts in SP-A null mice, demonstrating
that these mice were more susceptible to the infection than
age-matched wild-type control mice. This difference was
associated with an abrogation in the number of pulmonary
CD8" cells and a higher fungal burden in the lungs and
spleen of SP-A null mice than the wild-type littermates
[19]. Neither SP-A nor SP-D aggregated H. capsulatum,
based on light microscopic inspection of the fungus incu-
bated with these collectins for different periods of time. Be-
sides, none of these collectins altered the phagocytosis
process of this pathogen [19].

Paracoccidioides brasiliensis

After an extensive bibliographic search, we found no stud-
ies on the interaction between P. brasiliensis and SP-A or
SP-D; the same was reported by Brummer and Stevens
[16] in their review on collectins and fungal pathogens. In-
formation on this matter remains to be investigated.

Pneumocystis sp

The CRD region of SP-A and SP-D bind the major sur-
face glycoprotein (MSG) of Pneumocystis sp. [45], which
is the predominant membrane protein, is rich in man-
nose residues, and attaches Preumocystis to the alveolar
epithelium; this is mediated by a time- and calcium-
dependent mechanism and is competitively inhibited by
mannosyl albumin [46].

Pneumocystis has a narrow relationship with its host
and displays a host-specific interaction known as stenox-
enism, which was first described by Gigiliotti et al. [47] in
1993, and confirmed by Demanche et al. [48] in 2001.
Each Pneumocystis species infects a particular mammal
species: P. carinii and P. wakefieldiae infect rats, P. mur-
ina infects mice, P. oryctolagi infects rabbits, and P. jirove-
cii infects humans. Thus, before 2001, P. carinii was the
only species referred and privileged in several studies.

In rats, SP-D markedly accumulates during P. carinii
pneumonia and binds to MSG on the surface of this fun-
gus, which contains an N-linked carbohydrate chain that
is rich in glucose, mannose, and N-acetyl-glucosamine.
The binding site uses a mannose-type saccharide, which
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is a calcium-dependent mechanism, and is competitively
inhibited by maltose > glucose > mannose > N-acetyl-glu-
cosamine [49]. Dodecamers and other large arrange-
ments of SP-D bind better to P. carinii than oligomeric
arrangements [49].

SP-D additionally binds to fungal B-glucans present on
Pneumocystis’ cystic forms, which are potent stimulators
of TNF-a release [49]. P. carinii has other lectin binding
activity, thus raising the possibility that a surface lectin
on the fungus may also interact with the N-linked glyco-
sylation of SP-D and other collectins [49].

Interestingly, none of these binding mechanisms increase
the phagocytosis of this pathogen [46, 49]. However, SP-D
significantly promotes P. carinii self-association, which re-
sults in large aggregates of organisms that may exhibit im-
paired uptake by macrophages; this potentially represents a
mechanism for evading the microorganism’s elimination by
the host [49].

Pneumocystis infection results in major changes in the
expression of all surfactant components [50]. The total
protein content of bronchoalveolar lavage increases 10-
fold during Pneumocystis pneumonia, which induces a
3-fold increase in the total alveolar SP-A and SP-D pro-
tein content, due to the increased expression (mRNA)
and accumulation of these collectins in surfactant fluid
in human [51, 52] and rat samples [53]. Moreover,
Pneumocystis pneumonia decreases the total phospho-
lipid levels [50]. Both collectins are known to be in-
creased as a result of enhanced translation, constitutive
release, and decreased clearance from the pulmonary
fluid. Transgenic mice over-expressing IL-4, related to
the Th2 cytokine response to Prneumocystis pneumonia,
increase SP-D mRNA [50].

Aliouat et al. [53] used two corticosteroid-untreated ani-
mal models (rabbits and severe combined immunodefi-
ciency [SCID] mice), which were intranasally inoculated
with P. carinii, and explored the content of surfactant
phospholipids and proteins in bronchoalveolar lavage. In
SCID mice, the surfactant phospholipid/protein ratio re-
mains low, whereas the parasite increases and pneumonia
progresses. However, in rabbits, the surfactant phospho-
lipid/protein ratio and parasite rates were inversely pro-
portional, similar to the events observed in AIDS-related
Pneumocystis pneumonia in humans; these changes were
present prior to the establishment of pneumonia with
Pneumocystis’ proliferation [53].

Some studies have reported reduced surfactant phospho-
lipid levels of bronchoalveolar lavage either in rats infected
with P. carinii [54] or in humans with pneumocystosis [55].
The phospholipid composition of bronchoalveolar lavage
was also altered in P. carinii pneumonia, with a slight in-
crease in the percentage of sphingomyelin and a reduced
percentage of phosphatidylcholine. SP-A inhibits phospho-
lipids secretion by type II pneumocytes and stimulates its
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clearance [53]. There was no difference in the lavage
phospholipase A2 activity for the Pneumocystis-infected
and control groups [54].

The comparison among four groups of individuals:
healthy volunteers, Pneumocystis-negative HIV-positive
patients, mild Pneumocystis pneumonia patients, and
moderate-to-severe Pneumocystis pneumonia patients,
showed a reduction in total bronchoalveolar lavage lipids
in the Pneumocystis-positive groups [55], particularly in
the diacylglycerol lipids, whose predominant source is the
surfactant’s dipalmitoyl phosphatidylcholine. Furthermore,
diacylglycerol is metabolized by phospholipase A2, which
showed increased activity in moderate-to-severe Preumo-
cystis pneumonia (twice the level of the Pneumocystis-
negative patients and 30-fold the normal levels) [55]. Des-
pite the incremented activity of the phospholipase A2 en-
zyme, its metabolism products (monoacyl glycerols and
fatty acids) were not increased; this could be explained by
a dynamic cellular uptake and metabolism of lysolipids
and free fatty acids or a reduced production of surfactant
by alveolar type II cells. There was also a marked decrease
in surfactant glycerophospholipid in patients with AIDS
and Pneumocystis pneumonia, which suggests a potential
role in the pathophysiology of this disease [55].

Conclusions

Interactions between the pulmonary collectins and dif-
ferent microorganisms, such as bacteria and viruses,
have been extensively studied, but this is not the same
for fungal pathogens. There is a lack of information on
SP-A and SP-D binding to fungal carbohydrates, their
relation with immune cells for the clearance of these
pathogens, and the regulation of these proteins during
fungal infection.

Respiratory fungal pathogens represent one of the
most diverse groups of study in terms of surfactant pro-
teins. Many of these fungi have a very narrow geograph-
ical limit, where they cause an endemic disease, such as
B. dermatitidis and Coccidioides sp. Others, like C. neo-
formans, enter the organism by the respiratory route,
but the lung is not their target organ; thus, they have a
different association with surfactant proteins.

However, some fungi (H. capsulatum and Pneumocys-
tis spp.) share important characteristics, including a
worldwide distribution, the form of infection (inhalation
of particles), and the possibility of dissemination (par-
ticularly in immunosuppressed individuals). Interest-
ingly, they have also been found together co-infecting
humans [56] and other mammals [57], which suggest a
broader assembly between the fungal pathogens and the
surfactant proteins than what it is known. The last fea-
ture makes them a trending study topic.

Very scarce evidence is available about SP-A, SP-D
and H. capsulatum, contrasting the data concerning the
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pulmonary collectins and Pneumocystis spp. However,
despite the apparent understanding of the relation be-
tween the latter, there are information gaps that should
be investigated, hence opening a broad research field.
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