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Abstract

Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, is implicated as a possible
therapy for airway inflammation via induction of the transcription factor NF-E2-related factor 2 (NRF2). In this
proof-of-concept clinical study, we show that supplementation of SFN with broccoli sprout homogenate in healthy
human subjects did not induce expression of antioxidant genes or protect against neutrophilic airway inflammation
in an ozone-exposure model. Therefore, dietary sulforaphane supplementation is not a promising candidate for
larger scale clinical trials targeting airway inflammation.

Trial registration: NCT01625130. Registered 19 June, 2012.
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Introduction
Dear Editor,
Asthma is a heterogeneous chronic disease that can be

stratified based on features such as eosinophil or neutro-
phil predominance, and responsiveness to corticosteroids.
Current available therapies including corticosteroids
are not as effective for certain forms of the disease,
particularly neutrophil-predominant asthma. Further-
more, due to negative perceptions of corticosteroids,
the use of complementary and alternative medicine and
nutritional interventions for asthma is increasing in the
U.S [1]. The naturally occurring isothiocyanate, sulfo-
raphane (SFN), is found in cruciferous vegetables and
has been implicated as a possible therapy for airway
inflammation via induction of the transcription factor
NF-E2-related factor 2 (NRF2), which regulates expres-
sion of cytoprotective phase II antioxidant enzymes.
The relevance of targeting antioxidant gene expression

extends to other airway diseases as well, such as COPD,
which is characterized by oxidative stress and dysregulation
of antioxidant gene expression [2]. However, there are con-
flicting reports concerning the ability of SFN to induce anti-
oxidant gene expression, and its effectiveness against airway
inflammation [3–5]. In this brief communication, we report
our findings from a proof-of-concept study examining if in
vivo supplementation with SFN with broccoli sprout hom-
ogenate (BSH) is an effective intervention for ozone (O3)-
induced airway inflammation, a model of neutrophilic air-
way inflammation. Oxidative injury is especially rele-
vant for those with asthma, as antioxidant reserve may
be impaired in this population. O3 inhalation causes
significant airway neutrophilia in healthy non-asthmatic
persons [6], making this a useful model for neutrophilic
airway disease.

Methods
For this randomized, placebo-controlled, crossover study
we recruited 16 non-atopic, non-smoking healthy volun-
teers between the ages of 18–50 years. The O3 study
protocol was approved by the University of North
Carolina’s Institutional Review Board, and written in-
formed consent was obtained from all study subjects. All
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subjects underwent a standardized screening protocol
including allergy skin testing and methacholine challenge
as previously described [7, 8]. Volunteers were rand-
omized in a 1:1 ratio to consume either 200 g of BSH
(equivalent to 111 g of commercially available Broccospr-
outs® (Brassica Protection Products LLC)), or 200 g of
alfalfa sprout homogenate (ASH), which lacks SFN. The
dose of BSH and ASH were chosen based on results of a
prior study that found maximal induction of NRF2-
dependent gene expression by BSH with a 3 day 200-g
dosing regimen [4]. Subjects received supplements once
daily for 3 days during the initial study period, and the
alternate treatment during the crossover period. On the
third day of supplementation, each subject was exposed to
O3 (0.4 ppm) for 2 h while performing four 15 min ses-
sions of intermittent moderate exercise (defined as minute
ventilation or VEmin = 30–40 L/min) on a treadmill, sepa-
rated by 15 min of seated rest. Induced sputum was ob-
tained at screening and at 4 h post-O3 exposure and
processed for measurement of cytokines and cell counts
as previously described [7, 8]. Blood was collected at
screening and post-O3 for determination of SFN and
SFN-conjugate levels by mass spectroscopy. Additionally,
blood and nasal epithelial cells (NECs) were collected
4 h post-O3 to measure NRF2-regulated gene expres-
sion (HO-1, NQO-1, GSTM-1). There was a minimum
washout period of 14 days between treatment periods.

Results
Our primary hypothesis was that NRF2 activation with
SFN would decrease %PMNs in induced sputum compared
to placebo after O3 exposure. The primary endpoint for this
study was the effect of SFN compared to placebo on the
O3-induced change (post-O3 minus pre-O3) in %PMNs
in airway sputum. To analyze the treatment effect on
sputum cellularity, we compared active (BSH) to pla-
cebo (ASH) treatment using a linear mixed model ap-
proach [9]. Comparisons between post- O3 active or
placebo treatment to baseline values were carried out
using Wilcoxon-Signed rank tests. Criterion for signifi-
cance was taken to be p ≤ 0.05.
Sixteen subjects were randomized, and fifteen subjects

completed all visits. There were no serious adverse events
during the course of the study. Three days of supplemen-
tation with BSH significantly increased levels of SFN
(p = 0.001) and its major metabolites, SFN-N-acetyl-L-
cysteine (p = 0.002) and SFN-glutathione (p < 0.001)
compared to placebo (Fig. 1a). O3 exposure signifi-
cantly increased the quantity of neutrophils in sputum
(expressed as neutrophils/mg and %PMN) in both the
placebo and BSH treatment groups (Fig. 1b), but the
BSH supplementation group showed no significant dif-
ference in sputum neutrophilia compared to placebo.
Despite significantly increased plasma levels of SFN in
the BSH group, post-O3 gene expression of NRF2 and
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Fig. 1 Plasma levels of SFN and its major metabolites SFN-N-acetylcysteine and SFN-glutathione following BSH supplementation (a). O3-induced
changes in sputum neutrophil counts with placebo or SFN supplementation (N = 14) (b). Changes are presented as PMNs/mg sputum and
%PMNs/mg sputum
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phase II antioxidant defense genes in NECs and
peripheral blood were not significantly different from
placebo (Table 1).

Discussion
SFN has received significant attention in recent years as a
possible intervention for oxidant-induced airway inflam-
mation through induction of NRF2-regulated antioxidant
genes, but reports concerning its ability to induce an-
tioxidant gene expression and protect against airway
inflammation are conflicting. Possible explanations for
these contradictory results include variable dosing, dosage
forms, and differential biological responses in diseased
versus healthy populations. Our study utilized a similar
BSH preparation and dosing schedule as Reidl et al., in
which 200 g of BSH was ingested daily for three days by
healthy volunteers [4]. This preparation reportedly deliv-
ered 102 μmol SFN per dose. In contrast to Reidl et al., we
saw no differences in phase II enzyme expression in NECs
or peripheral blood. Furthermore, BSH supplementation
had no impact on lower airway inflammation, as deter-
mined by O3–induced changes in sputum neutrophilia.
Our results are in agreement with Sudini et al., in which
ingestion of 100 g of whole broccoli sprouts daily by
allergic asthmatics for 3 days had no effect on either
NRF2-dependent gene expression in NECs and PBMCs,
or eosinophilic lower airway inflammation (measured
by FENO) [3]. On the other hand, supplementation of
SFN using a standardized dose of broccoli sprout ex-
tract inhibited nasal inflammatory responses to diesel
exhaust in cat-allergic subjects [5]. These contradictory
results may be due to differing systemic levels of SFN
achieved with dietary supplementation with BSH, which
is not standardized. However, because variability exists

in the timing and methods of detection for SFN conju-
gate levels, it is difficult to compare systemic SFN levels
across studies.
Similar to our study, other groups have demonstrated

marked increases in SFN conjugate levels following in vivo
supplementation with BSH with minimal effects on antio-
xidant gene expression [3, 10]. It is possible that the plasma
levels of SFN achieved with our BSH supplementation regi-
men were not sufficiently high to be biologically active. A
dosing study using fresh broccoli sprouts that achieved sig-
nificantly higher peak plasma levels of SFN metabolites
found no significant increases in antioxidant gene expres-
sion in whole blood [10]. Although several in vitro studies
report induction of NRF2 genes with SFN treatment,
it is important to note that many of these studies
utilize concentrations of SFN in the micromolar range
[11–14]. Plasma levels of SFN achieved in our study
are several orders of magnitude lower than those used
in vitro; furthermore, levels achieved in target tissues
are likely less than those achieved in plasma. There-
fore, doses of BSH that can be reasonably consumed
by an adult may exhibit little biologic activity.

Conclusions
In summary, dietary supplementation of SFN with BSH
did not induce expression of NRF2-regulated genes, or
have protective effects with O3 exposure, a model of neu-
trophilic airway inflammation. Collectively, these findings
suggest that SFN supplementation with BSH is not a
promising candidate for larger scale clinical trials targeting
airway inflammation.
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Table 1 % Change antioxidant gene expression in healthy
volunteers following O3 exposure

Placebo SFN *p value

Nasal Epithelial Cells

GSTM1 58.74 ± 57.07 49.99 ± 41.76 0.9375

HO-1 2.041 ± 24.97 −6.06 ± 16.69 0.9097

NQO-1 27.65 ± 44.88 39.35 ± 41.57 0.9097

NRF-2 2.521 ± 17.42 0.9522 ± 18.52 0.9097

Peripheral Blood

GSTM1 26.29 ± 44.12 −14.11 ± 20.05 >0.9999

HO-1 −5.42 ± 13.93 −7.61 ± 17.17 0.9453

NQO-1 13.87 ± 43.43 −18.18 ± 26.59 0.9375

NRF-2 22.8 ± 27.20 −12.59 ± 10.89 0.6406

Data are shown as mean ± SEM
Changes in GSTM1 expression were performed only on GSTM1 sufficient
subjects. For all genes, N = 6–14
*Comparisons between Placebo and SFN groups were carried out using paired
Wilcoxon-Signed rank tests
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