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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by frequent
exacerbation phenotypes independent of disease stage. Increasing evidence shows that the microbiota plays a role
in disease progression and severity, but long-term and international multicenter assessment of the variations in viral
and bacterial communities as drivers of exacerbations are lacking.

Methods: Two-hundred severe COPD patients from Europe and North America were followed longitudinally for 3
years. We performed nucleic acid detection for 20 respiratory viruses and 16S ribosomal RNA gene sequencing to
evaluate the bacterial microbiota in 1179 sputum samples collected at stable, acute exacerbation and follow-up
visits.

Results: Similar viral and bacterial taxa were found in patients from the USA compared to Bulgaria and Czech
Republic but their microbiome diversity was significantly different (P < 0.001) and did not impact exacerbation rates.
Virus infection was strongly associated with exacerbation events (P < 5E-20). Human rhinovirus (13.1%), coronavirus
(5.1%) and influenza virus (3.6%) constitute the top viral pathogens in triggering exacerbation. Moraxella and
Haemophilus were 5-fold and 1.6-fold more likely to be the dominating microbiota during an exacerbation event.
Presence of Proteobacteria such as Pseudomonas or Staphylococcus amongst others, were associated with
exacerbation events (OR > 0.17; P < 0.02) but more strongly associated with exacerbation frequency (OR > 0.39; P <
4E-10), as confirmed by longitudinal variations and biotyping of the bacterial microbiota, and suggesting a role of
the microbiota in sensitizing the lung.

Conclusions: This study highlights bacterial taxa in lung sensitization and viral triggers in COPD exacerbations. It
provides a global overview of the diverse targets for drug development and explores new microbiome analysis
methods to guide future patient management applications.

Background
Chronic obstructive pulmonary disease (COPD) is de-
fined by airflow limitation but encompasses several lung
diseases. This heterogeneity includes differences in clin-
ical characteristics, source of inflammation, response to
therapies and causes of exacerbation [1]. As COPD pro-
gresses, exacerbations become more frequent and more

severe. Exacerbation rates reflect an independent suscep-
tibility phenotype [2], which could be mediated by host
factors [3], environmental factors [4], viral infections
and/or the bacterial microbiome [5, 6].
Infections are predominant causes of COPD exacerba-

tions, with approximately half reported to be caused by
bacterial infections including non typeable Haemophilus
influenzae (NTHi), Moraxella catarrhalis, Streptococcus
pneumoniae, or Pseudomonas aeruginosa, and the other
half by viral infections, primarily human Rhinovirus
(HRV), but also Influenza virus, Coronavirus and
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Respiratory syncytial virus (RSV) to name a few [5, 6].
Bacteria and viruses are also frequently isolated in the
airways of stable COPD patients [6–8]. The advent of
culture-independent testing has suggested viral persist-
ence [9] and colonization of the lower airways with a
resident bacterial microbiota [10], implicating a role for
the microbiota in disease pathogenesis, progression and
treatment outcome of lung diseases [7].
Studies of the microbiome provide a new framework

to understand host-pathogen interactions, which can
also yield new markers for patient diagnosis and man-
agement. Microbiota diversity is seen as a potential bio-
marker in cases where a single pathogenic organism
reduces community complexity such as in bacterial
vaginosis [11], or Crohn’s disease [12]. Lung microbial
dysbiosis in COPD is characterized by decreased diver-
sity [10–12], which may contribute to altered immune
response to environmental insults [13]. Dysbiosis at the
time of COPD exacerbation contributes to increased dis-
ease severity [14] and higher 1-year mortality rates [15].
Geography could also be a potential covariate in

COPD patients microbiota. The gut microbiota has been
shown to be geographically variable [13]. Previous stud-
ies in different conntries have evaluated the COPD
microbiota [16, 17], but the effect of geographical varia-
tions has not yet been evaluated in a single study in rela-
tion to disease severity. The present cohort stems from a

study on the incidence of viral infections in COPD [5].
Patients were enrolled in Europe and North America
and followed up for up to 3 RSV seasons, with scheduled
wellness visits and unscheduled illness visits. To further
our understanding of COPD exacerbation dynamics, we
retrospectively evaluated the sputum bacterial micro-
biota from a subset of this study. The goals were to iden-
tify differences in patients with higher rates of
exacerbations, to assess geographical differences in the
microbiota between Europe and the USA, and to deter-
mine the influence of viral infections on microbiota di-
versity and the frequency of exacerbations.

Materials and methods
Study cohort
The patient cohort is part of an observational study on
the incidence of acute respiratory illness (ARI) or events
leading to the worsening of cardiorespiratory status in
COPD (ClinicalTrials.gov, NCT01455402) [13]. The
protocol was approved by independent institutional re-
view boards, and all subjects signed written informed
consent at enrollment. The study population included
200 adults ≥50 years of age with COPD, recruited at 6
sites in Bulgaria, 5 sites in Czech Republic, and 14 sites
across the USA from fall 2011 to spring 2014 (Fig. 1a).
Cohort from Bulgaria and Czech Republic showed simi-
lar characteristics, and are analyzed jointly as Europe for

Fig. 1 Sampling timeline and composition. (a) Timeline from Oct 2011 to May 2014, COPD patients were enrolled and sampled during scheduled
wellness visits (blue arrows), and any unscheduled visits (red and purple arrows) within 3 days of an acute exacerbation or exacerbation follow-up
visit. Samples were considered stable if collected 31 days post-hospitalization or ARI. Dotted arrows correspond to samples collected at scheduled
wellness visits that incidentally corresponded to acute exacerbation events (1.2%) and exacerbation follow-up visits (65%). Piecharts represent the
proportion of patients from Europe and USA (b), the proportion of samples collected at each disease state (c) and the proportion of samples
associated with antibiotics (Abx) and inhaled corticosteroids (CS) taken in the past 7 days (d)
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ease of representation. Subjects had scheduled wellness
visits in May and October each year to obtain sputum
and clinical data (Fig. 1a). Unscheduled illness visits to
collect sputum and clinical data were performed when a
subject experienced an ARI or acute exacerbation of
COPD symptoms, and during follow-up illness visits.
Samples were considered stable if collected at least 30
days from the last day of hospitalization or from the last
ARI or acute exacerbation event if it did not require
hospitalization. Acute exacerbation samples were col-
lected within 72 h of an event, additional samples were
collected 4–30 days after an acute exacerbation event
during unscheduled visits (Fig. 1a, c). Patients were char-
acterized with a frequent exacerbator phenotype if they
experienced 2 or more exacerbation events per year. No
investigational drug was administered in the study. The
subject’s physician prescribed and recorded all treatment
deemed necessary to provide adequate supportive care.
Samples collected 1 to 7 days following treatment were
considered treatment associated (Fig. 1d).

Sputum sample collection
Spontaneous rather than induced sputum collection was
possible in this severe COPD study subset following a stan-
dardized collection visit [18]. Subjects were asked to gargle
with water immediately prior to sputum collection to re-
duce the number of oral bacteria [19]. Subjects were asked
to cough deeply and expectorate into a cup, mixed 1:1 with
cold Transport Media and kept at -60 °C or below [20].

Viral testing
The GenMark respiratory virus panel (GenMark Diagnos-
tics, Inc. Carlsbad, CA) was used to detect common re-
spiratory viruses from all sputum samples. RSV detection
was confirmed by RT-PCR as previously described [5].
Additionally, RT-PCR using primers against HRV VP1-
VP4 [21] was used to detect human rhinovirus subtypes.

16S rRNA gene sequencing
Bacterial genomic DNA was extracted at a single central
lab using the Zymobiomics 96 DNA kit (Zymo, Califor-
nia, USA) following manufacturer’s instructions. The V4
hypervariable region of the 16S rRNA gene was PCR
amplified [22] and sequenced using Illumina Miseq plat-
form along with negative controls, Zymobiomics Micro-
bial community and DNA standards, and a PhiX library
for quality control.

Bioinformatic analysis
16S rRNA gene sequences were analysed using QIIME2
version 2018.11 [23]. DADA2 software package [24],
wrapped in QIIME2, was used for correcting sequences
and obtained 9853 annotated sequence variants (ASVs).
Taxonomy was assigned using a Naïve Bayes classifier

[25, 26] that was trained on the Greengenes database
version 13.8 clustered at 99% identity [27] V4 sequences.
Alignment was performed with MAFFT [28], masked
and used in FastTree [29] to build the phylogenetic tree.
Alpha-diversity metrics [30], beta diversity metrics [31],
and Principal coordinate analysis (PCoA) were estimated
after samples were rarefied to 1000 sequences per sam-
ple. Significant features of interest were re-tested using
non-rarefying alpha [32] and beta diversity estimates
[33]. Analysis of composition (ANCOM) was used for
differential taxa abundance calculations [34] on non-
rarefied data. ANCOM account for the structure of the
data and controls for the false discovery rate. Microbiota
profiles were clustered into biotypes using the biotypeR
package in R [35]. Longitudinal microbiota variations at
stable time points were assessed by calculating the me-
dian weighted UniFrac distance [36] for patients with at
least 3 stable samples. Patients were categorized into the
bottom and top quartile of within-patient stable samples
median UniFrac distances, respectively.

Statistics
Associations of the microbiota and viral components
with demographics and clinical data were calculated in R
using Fisher’s test for categorical variables, Welsh’s T-
test for comparison of means in continuous variables,
and chi-squared test to compare expected frequencies.
Odds ratio were calculated using questionr package in R
[37]. Associations of microbial diversity with demo-
graphics and clinical data were calculated with Qiime2’s
diversity plugin using grouped and pairwise Kruskal-
Wallis test corrected for false discovery rate for analysis
of alpha diversity, and PERMANOVA following 999 per-
mutations for analysis of beta diversity distances.

Results
Cohort characteristics
The cohort was composed of 200 patients, 101 from
Europe (Bulgaria and Czech Republic) and 99 from the
USA (Fig. 1 and Table 1). All but 5 patients presented
with severe or very severe COPD. Patients from Europe
and the USA were matched by age, sex, and GOLD
stage. At enrollment, their forced expiratory volume as a
percent of predicted (FEV1%) and their comorbidities
(congestive heart failure, diabetes, hypertension and ma-
lignancy) were similar between Europe and the USA.
The USA patients had significantly higher smoking his-
tory in pack-years and longer COPD duration. The
number of exacerbations per year and the number of
frequent exacerbator phenotype, defined as 2 or more
exacerbations/year, was higher in the USA compared to
Europe, but not statistically significant (Table 1). A total
of 1179 sputum samples were collected from these pa-
tients over 3 years, with similar proportions of samples
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collected at acute exacerbation in Europe (33.3%) and in
the USA (33.9%) (Supplementary Table 1). Approximately
11 and 16% of samples were associated with antibiotic and
corticosteroid treatment, respectively. Significantly more
samples collected in the USA were associated with anti-
biotic treatment (Supplementary Table 1).

Overview of 16S microbiota and viral detection in COPD
sputum
Analysis of bacterial taxa in 1179 sputum samples shows
phyla commonly observed in the lung microbiota, with
Firmicutes, Proteobacteria and Bacteroidetes represent-
ing a majority (> 80%) of the phyla identified (Fig. 2a).
Prevotella, Veillonella, Streptococcus and Haemophilus
represented the most prevalent (> 65%) bacterial genera
(Fig. 2a). Samples from European patients had more
Bacteroidetes and less Proteobacteria overall than sam-
ples from the USA patients. Within the phylum Firmi-
cutes, the USA patients had more Streptococcus than
Veillonella compared to European patients (Fig. 2a).
Microbiota predominant with Prevotella, Streptococcus
and Veillonella were found in a majority of samples

(1012/1179; 85.8%) (Fig. 2b). Prevotella, Streptococcus
and Veillonella represented the majority of the micro-
biota in samples collected at stable states, Haemophilus
and Moraxella were predominant in acute exacerbation
samples, and Pseudomonas was prevalent in exacerba-
tion follow-up samples (Fig. 2b).
Viral testing on 1179 sputum samples showed that

25.6% of sputum samples were positive for at least one
virus, with HRV found in the largest proportion of sam-
ples (13.6%), followed by Coronavirus (5.1%) and Influ-
enza virus (3.6%) (Fig. 2c). All viruses, except for
adenoviruses, were detected more frequently at acute ex-
acerbation (14.4%), than at follow-up visits (7.2%) or
stable (5.6%) (Fig. 2c). There were no significant differ-
ences in viral incidence between Europe and the USA,
with the exception of Coronavirus HKU1, Influenza B
virus and RSV A (Supplementary Table 1).

Microbiota diversity
Alpha diversity metrics such as the number of observed
ASV, Shannon evenness, or Faith phylogenetic diversity
(PD) indexes, represent the mean number of taxons in a

Table 1 Patient demographics and major clinical history

Age at Basine, years Patient characteristics* Europea (n = 101) USAb (n = 99) P-value

Female 37 (36.7%) 33 (33.3%) 0.6

Age at Baseline, years 65 [50–81] 66 [51–93] 0.2

Smoking status 0.008

Current 30 (29.7%) 26 (26.8%)

Former 54 (53.5%) 67 (69%)

Non-smoker 17 (16.8%) 4 (4.1%)

Smoking history, pack-years 31 [0–90] 51 [0–128] 1.0E-06

Years of COPD 9 [1–32] 11 [1–34] 0.02

Years of severe COPD 4 [1–15] 7 [1–33] 5.0E-04

GOLDc stage 0.9

Mild 1 (0.9%) 0 (0%)

Moderate 2 (2%) 2 (2%)

Severe 69 (68.3%) 66 (68.8%)

Very Severe 29 (28.7%) 28 (29.2%)

FEV1d 39 [17–85] 37 [13–71] 0.1

Frequent exacerbatore 18 (17.8%) 29 (29.3%) 0.06

Exacerbations per year 1.1 [0–11.8] 1.7 [0–12.1] 0.05

Congestive heart failure 28 (27.7%) 16 (16.2%) 0.06

Diabetes 25 (24.8%) 29 (29.9%) 0.4

Hypertension 61 (60.4%) 70 (72.1%) 0.08

Malignancy 2 (2%) 5 (5.1%) 0.2

* Categorical data presented as number (proportion), and continuous variable as mean [range]
a Patients recruited at 11 sites in Bulgaria and Czech Republic
b Patients recruited at 14 sites in Alabama, Arizona, Georgia, Iowa, Nevada, New York, Ohio, Pennsylvania, Tennessee, Texas, Wisconsin
c Global Initiative for Chronic Obstructive Lung Disease
d Forced Expiratory Volume in 1 s, expressed in % of predicted based on height and weight
e ≥ 2 exacerbations/ year
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Fig. 2 Microbiota composition and diversity is associated with geography, not with acute exacerbation or viral infections. (a) Taxonomic barplot
of major bacterial phyla and genera in samples grouped by geography and disease state, and their respective Shannon diversity index
represented as boxplots with interquantile range whiskers. (b) Percentage of samples with microbiota predominant with nine most common
COPD bacterial taxa, and (c) percentage of samples positive for 7 most common respiratory viruses are plotted at stable (green), acute
exacerbations (red) and follow-up visits (purple), and their respective Shannon diversity index. * P < 0.01, **P < 0.001, *** P < 0.0001, lower and
higher statistical significant diversity compared to the average are noted in red and blue, respectively. HMPV, Human Metapneumovirus
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sample, sometimes weighted by the phylogenetic related-
ness. Overall, samples from the USA patients had signifi-
cantly lower shannon diversity index than those from
Europe (Fig. 2a), even when corrected for antibiotic use
or clinical sites (Supplementary Fig. 1 and 2). Years of
severe COPD and smoking pack-years were associated
with differences in microbiota diversity but not as sig-
nificantly as geography (Supplementary Table 2). No sig-
nificant differences in the number of observed ASVs and
in Faith PD index were observed at exacerbation com-
pared to stable samples (Supplementary Table 2).
Prevotella-predominant microbiota showed the highest
alpha diversity, while samples predominant with Escheri-
chia, Haemophilus, and Pseudomonas had the lowest
alpha diversity (Fig. 2b). There were no significant differ-
ences in microbial diversity between samples infected or
not with a virus, or between samples infected with dif-
ferent viruses (Fig. 2c). Beta diversity are metrics such as
weighted UniFrac and robust Aitchison PCA used for
comparing microbiota communities resulting in distance
matrices. Here, principal coordinate visualization of
weighted UniFrac distance supports the above conclu-
sions, showing some differences in geography and pre-
dominant bacteria but not affected by the type of viral
infection (Supplementary Fig. 3). These results were also
supported by testing non-rarefied alpha and beta-
diversity estimates, with geography (P < 0.044) and dom-
inant bacterial genus (P < 0.001), but not viruses (P >
0.094) being associated with significant changes in diver-
sity (data not shown).

Odds ratio of exacerbation
The odds ratio of an acute exacerbation event and fre-
quent exacerbations (≥2 events/ year) was calculated for
demographic and clinical data, viral infections and abun-
dance of certain bacterial taxa in the lung microbiota
(Fig. 3). Viral infections were more strongly associated
with an exacerbation event than with frequent exacerba-
tions. Parainfluenzaviruses (PIV), Influenza B virus and
RSV B had the highest odds ratio of an exacerbation
event (Fig. 3a). Interestingly, Influenza B virus was nega-
tively correlated with frequent exacerbations, as it was
only detected in patients that exacerbated infrequently.
Bacteria were more strongly associated with exacerba-

tion frequency than with exacerbation events. Presence
or higher abundance of Enterococcus, Lactobacillus,
Moraxella, Pseudomonas, Staphylococcus and Strepto-
coccus was correlated with frequent exacerbations. Neis-
seria, Prevotella and Veillonella were significantly
associated with a lower exacerbation frequency (Fig. 3b).
Interestingly, top quartile abundance odds ratio of the
genus Haemophilus was not associated with higher ex-
acerbation rate. This effect, however, seemed mediated
by H.parainfluenzae. We noted that differential

abundance of only 2 bacterial taxa were significantly as-
sociated with exacerbation events, while 19 taxa were as-
sociated with exacerbation frequency (Supplementary
Fig. 4), with high E.coli, Lactobacillus, and Staphylococ-
cus in stable samples as potential predictors of frequent
exacerbation (Supplementary Fig. 5).
Patients with hypertension had a significantly higher

odds ratio of being frequent COPD exacerbators (Fig. 3c).
Other comorbidities did not significantly influence ex-
acerbation frequency.

Longitudinal variations of stable state sputum microbiota
and viruses
We quantified temporal variability of the sputum
microbiota at stable state within individual subjects.
For 84 patients with more than 3 longitudinal stable
samples, we calculated their median weighted UniFrac
distances and categorize the top and bottom quartile
patients into consistent and variable microbiota over
time (Fig. 4a). Patients with a more variable sputum
microbiota (median weighted UniFrac > 0.22) were
more likely to have a higher relative abundance of
Bacillus, Escherichia, Lactobacillus, Moraxella, and
Staphylococcus (Fig. 4 and Supplementary Fig. 6).
Microbiota variability in seemingly stable disease state
were associated with higher exacerbation frequency
and frequent viral infections (Fig. 4b).
Longitudinal sampling also enabled the assessment of

recurrent viral infections by the same viral species, strain
or subtype in consecutive samples. Viruses were de-
tected in 2 to 3 consecutive samples from 14 patients
(Fig. 5). The time beween 2 consecutive samples ranged
from 3 days to 1 year. Viruses that were detected within
2–3 weeks of sampling corresponded most probably to a
typical single infection, and these included the detection
of Coronavirus OC43, HRV A, PIV4, RSV A and B. Vi-
ruses that were detected in the same patient over 60 days
apart may correspond to chronic or recurrent infections,
with Adenovirus C, Coronavirus HKU1, HRV A, HRV B
and HRV C detected. Eighteen out of 30 (60%) samples
from these 14 patients corresponded to acute exacerba-
tion events, and 6/14 (42%) patients were frequent
exacerbators (Fig. 5).

Biotyping of COPD sputum microbiota
We sought to define common microbiota clusters and
their association with clinical characteristics. Microbiota
in stable samples could be separated into 2 biotypes, as
indicated by the highest Calinski-Harabasz (CH) index
following iterative partitioning-around-medoids cluster-
ing analysis over the Jensen-Shannon distance. Between-
class analysis showed 2 major clusters, biotype 1 repre-
sented by Neisseria and Veillonella, and biotype 2 repre-
sented by Streptococcus and Rothia (Fig. 6a). Samples
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with high relative abundance of Streptococcus/Rothia
(biotype 2) were found in greater proportion in USA pa-
tients, which was associated with longer history of
COPD and less frequent detection of viruses at stable

visits (Fig. 6a). Samples at acute exacerbation visits could
be separated into 3 biotypes, characterized by a high
relative abundance of either Prevotella (biotype 1),
Streptococcus (biotype 2), or Haemophilus (biotype 3)

Fig. 3 Risk factors of COPD exacerbations. Adjusted odds ratio of (a) viral infections (b) bacterial abundance (top/bottom quartile) and (c)
demographics and clinical history features to be associated with acute exacerbation events or patients with frequent exacerbations (≥2 events/
year). Significance are presented in red (positive association) and green (negative association). Orange dots represent non-significant odds ratio.
Horizontal bars represent the 95% confidence interval. Genera names are in bold and species italicized
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(Fig. 6b). Streptococcus and Haemophilus were found in
a majority of USA samples, and associated with longer
COPD duration, higher exacerbation frequency, antibi-
otics and corticosteroid use, but did not significantly
correlate with higher viral infections (Fig. 6b). Exacerba-
tion follow-up samples were more diverse and could be
optimally clustered into 6 biotypes. Biotype 6 was

characterized by a high relative abundance of Pseudo-
monas and significantly associated with longer COPD
duration and antibiotic use. Biotype 4 was characterized
by a high relative abundance of Streptococcus or Rothia
and was significantly associated with higher exacerbation
frequency. Other biotypes were not significantly associ-
ated with clinical characteristics (Fig. 6c). Biotyping

Fig. 4 Longitudinal variations of the COPD sputum microbiota at stable state is associated with higher disease burden. a Longitudinal Taxa
barplot at Genus level of all 42 patients representing the top (variable) and bottom (consistent) quartile of median weighted UniFrac distances at
stable states. b Proportions of patients with low or high longitudinal microbiota variability associated with geography, and boxplots with
interquantile range whiskers for the frequency of exacerbations, and of viral infections

Fig. 5 Timeline of consecutive viral detection. Longitudinal viral detection in 14 patients as indicated by a cross and lines are colored according
to virus species, strain or subtype. Exacerbation events are indicated by a filled circle, and frequent exacerbator phenotypes are indicated by plus
or minus signs
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shows that microbiota profile diversity is dynamically
dependent on disease state.

Discussion
Understanding of the presence and role of both bacterial
and viral pathogens over time in the heterogeneous and

dynamic COPD disease [38] is needed for patient treat-
ment and management. The characterization of the 16S
rRNA gene microbiota and respiratory viruses from a
longitudinal and international cohort of severe COPD
patients described in this study provides the largest sur-
vey to date on their complex associations with

Fig. 6 Biotyping clusters of COPD sputum microbiota at stable, acute exacerbation and follow-up visits. For each state, optimal cluster number
analysis using the Calinski-Harabasz index, scatter diagram of samples clustered by between-class principal component analysis, contribution of
major bacterial genera in means per class and proportion of samples belonging to each cluster plotted by region, frequency of exacerbation,
frequency of of viral exacerbations, antibiotics use, corticosteroids use and CODP duration are presented at stable (a), acute exacerbated (b) and
exacerbated follow-up visits (c)
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geography, exacerbation frequency and other demo-
graphic and clinical history.
COPD patients are particularly susceptible to respira-

tory infections [6]. HRV was identified as the most
prominent agent in respiratory tract infections in this
cohort of COPD patients. Viral characterization is of
particular importance as few reports exist on the diver-
sity of respiratory viral agents in COPD [6] and viral di-
versity should be accounted for when designing new
treatments. In particular, the newly described HRV C
was detected in 23 of 11,179 samples (21 of 200 patients)
in the present cohort, which was reported only once pre-
viously [39].
We detected viruses in 15% of stable samples. Asymp-

tomatic viral infections in COPD patients are common
[40]. However, the role of these asymptomatic infections
in disease progression is unclear. Most respiratory vi-
ruses tested here showed highly significant positive odds
ratio with exacerbation events, but lower significance in
regards to exacerbation frequency. This may indicate
that viral infections alone do not sensitize the lung to re-
peat exacerbations as much as the bacterial microbiota.
Interestingly, similar trends have been shown in asthma
where respiratory viral infections in early life resulted in
microbiome changes and hypersensitivity predisposition
that can lead to asthma [41, 42].
Repeat viral detection were more frequent in patients

with frequent exacerbator phenotype, but the number
was small, and contradicting reports exist on the re-
peated detection of a single virus in COPD [9]. Further
complete viral genomic characterization will be needed
to understand the nature of viral infection.
With the advent of culture-independent techniques,

it appears that all microbiomes harbor potential bac-
terial pathogens as characterized here and elsewhere
[14], but that only a portion of them will develop
exacerbation-prone phenotypes, a phenotype that ap-
pears independent of disease GOLD stage yet linked
to microbiota diversity [13]. It was previously ob-
served that microbiota diversity in the COPD lung
correlated with disease severity but not disease state
[43]. Here, microbiota diversity alone was not corre-
lated with frequent exacerbations, but was highly cor-
related with certain bacterial taxa dominating the
microbiota. Microbiota predominant with Escherichia,
Pseudomonas or Streptococcus, showed significantly
lower alpha diversity and significant positive odds ra-
tio with the frequent exacerbation phenotype, suggest-
ing a role of the microbiota in sensitizing the COPD
lung to acute exacerbations. This study was limited in
disease severity metrics with the exception of baseline
evaluation and sampling of events. Longitudinal moni-
toring of symptoms scales would help to better
understand the relation of certain bacteria to not only

exacerbation frequency, but also the symptom severity
and COPD progression.
The use of biotyping has been seldom used in respira-

tory microbiota research [44] and not yet explored in
COPD. A complex resident bacterial community could
be identified in all COPD sputum samples and catego-
rized into 2, 3 and 6 biotypes at stable, acute exacerba-
tion and exacerbation follow-up visits, respectively.
Biotype 1 at stable state was associated with higher viral
infections, while biotypes 2 and 3 at acute exacerbation
were associated with high exacerbation frequency. These
findings are interesting because they mirror another
study showing the partitioning of COPD exacerbation
samples into 3 cytokine profile clusters [3] with associa-
tions to specific ratios of Proteobacteria, Firmicutes and
Bacteroidetes that highlighted the heterogeneity of ex-
acerbation profiles in COPD patients. During exacerba-
tion follow-up visits, biotype 6 with a high relative
abundance of Pseudomonas was found over-represented
in samples associated with antibiotics use. Antibiotic
treatment inadequacy is the cause for secondary infec-
tion or the emergence of multi-drug resistant P.aerugi-
nosa [45]. New targeted treatments, such as monoclonal
antibodies, could be useful in such settings [46].
The principal novelty of this study cohort was the long

term patient follow-up. We were able to collect several
sputum samples per patient at stable state over the
course of 3 years and studied the COPD microbiota lon-
gitudinally. The lung microbiome is inherently variable,
shaped by a process of inhalation and elimination [47].
The lung microbiome is also personal, with large inter-
patient variability [48]. Previously, it was shown that mi-
crobial dysbiosis from stable to exacerbated state corre-
lated with greater exacerbation severity [14]. Here,
patients with greater microbiota variability at stable state
correlated with higher exacerbation frequency. Proteo-
bacteria such as Pseudomonas and Moraxella were more
abundant in patients with more variable microbiota at
stable state. Interestingly, P.aeruginosa and M.cattharalis
are prominent causes of exacerbations [6], but their role
in stable disease is less clear [49]. It was previously
shown that chronic colonization with P. aeruginosa oc-
curs more frequently in more severe COPD patients [50]
and that M.catarrhalis asymptomatic colonization was
associated with a greater frequency of a sputum IgA re-
sponse than exacerbation [51]. Our results suggest that
dysbiotic burden at stable state by Pseudomonas, Morax-
ella and others might sensitize the lung to further exac-
erbations and viral infections. Pseudomonas and
Moraxella, like many opportunistic Proteobacteria, are
pro-inflammatory [52, 53]. Imbalanced inflammation can
improve P.aeruginosa’s fitness [52], allow the acquisition
of new M.cattharalis strains [53], leading to exacerba-
tion and possibly infections from other pathogens in a
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coupled cycle of inflammation and dysbiosis [47]. Micro-
biology clinical testing in COPD patients is most often
performed at exacerbation or follow-up visits. Patients
might benefit from clinical monitoring of these bacteria
at stable state to assess their presence and/or growth
which could lead to potential future exacerbations.
We also noted geographical differences in COPD lung

microbiota. Geographical differences in gut microbiota
have previously been noted [35], but not yet in the lung.
There were significant differences in alpha and beta diver-
sity between the USA and Europe, but not within coun-
tries or sites. Microbiota diversity in the USA was lower
and although frequent exacerbator phenotypes were more
common than in Europe, the difference was not signifi-
cant. USA patients tended to have samples with high rela-
tive abundance of Streptococcus (biotype 2) and
Haemophilus (biotype 3) associated with the frequent
exacerbator phenotype. S.pneumoniae and H.influenzae
are commonly associated with exacerbations [54], and
should also be considered as potential risk factors in the
frequent exacerbator phenotype. Significantly more sam-
ples collected in the USA were associated with antibiotics
use, but this alone did not explain differences in diversity.
This observational study included a variety of standard-of-
care medications, doses and timings precluding precise
treatment effect modeling on the microbiota. Clinical tri-
als exploring current and novel treatment modalities will
lead to better patient management and antibiotics stew-
ardship as reviewed elsewhere [55].
Predominance of Haemophilus was over-represented in

acute exacerbation samples (Figs. 2 and 6), as noted in
previous studies [6, 14, 17, 43, 56]. However, interestingly,
using odds ratio (Fig. 3) or ANCOM (Suppplementary
Fig. 4a) over Haemophilus abundance, H.influenzae was
high but not significantly associated with acute exacerba-
tion event, whereas H.parainfluenzae was significantly
higher at stable state. Differences in Haemophilus abun-
dance compared to other studies might be due to the type
of sputum collected, transportation media, extraction
protocol or an effect of the sample size. Although H.para-
influenzae can be the cause of respiratory infection in
healthy subjects, it has not been associated with exacerba-
tion in COPD [56]. H.parainfluenzae could compete for
niche resources leading to overgrowth of the more patho-
genic H.influenzae. Previous work has shown that H.influ-
enzae competes with S.pneumoniae [57] and that patients
colonized by NTHi and acquiring HRV have more fre-
quent and severe exacerbations [58]. Here, Streptococcus
species could not be resolved using 16S rRNA V4 region,
and although speciation of Haemophilus was attempted,
further validation using targeted PCR or whole genome
sequencing will be necessary to ensure correct discrimin-
ation. To note, constant improvements in 16S databases
can also affects taxonomic resolution. SILVA database

[59] version 132 updated in 2017 classified reads into
more genera (n = 562) compared to Greengenes version
13.8 updated in 2013 (n = 395). However, bacterial taxa
discussed in this study showed less than 1% variations in
read classification between the 2 database classifiers (data
not shown), and conclusions were unchanged. Speciations
and typing of bacteria and viruses are critical to under-
standing their pathogenicity and complex relationships.
Greater taxonomic resolution will be achieved using up-
dated databases and more comprehensive techniques like
shotgun metagenomics.

Conclusion
In summary, our study provides a broad survey of vi-
ruses and bacteria colonizing severe COPD patients,
providing clinicians with potential targets for clinical
testing and patient treatment. It demonstrates that viral
infections are strongly associated with acute exacerba-
tion events, and that particular components of the
microbiota are associated with higher exacerbation fre-
quency. Geographic and longitudinal differences in the
lung COPD microbiota exist and were correlated with
exacerbation outcomes. Stable state longitudinal micro-
biota monitoring and biotyping could lead to the identi-
fication of potential biomarkers indicative of future
exacerbations from bacterial sensitization. Comprehen-
sive microbiota profiling and respiratory viral detection
will be useful in the development of anti-microbial
agents for therapeutic intervention or for better patient
management.
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